1-channel

DC Amplifier

Other

Dynamic Strain Measuring Instrument Selection Chart

1-channel

Models	Channels	Meas	uring gets		dge ation	Frequency	Indicators	Features	Power	Pages
Wiodeis	Charmers	Strain	Voltage	DC	AC	Response	mulcators	reatures	Supply	rages
Strain Amplifier DPM-911B/912B/913C High stability High accuracy Easy operation	1	Yes			Yes	DPM-911B DC to 2.5 kHz DPM-912B DC to 5 kHz DPM-913C DC to 10 kHz	Digital	I/O isolated	100 VAC 115 VAC 200 VAC 230 VAC 10.5 to 15 VDC	3-5
Strain Amplifier DPM-951A DPM-952A Robust against invert noise Easy operation	1	Yes			Yes	DPM-951A DC to 2 kHz DPM-952A DC to 5 kHz	Digital	Inverter noise reduction circuit I/O isolated	100 VAC 115 VAC 200 VAC 230 VAC 10.5 to 15 VDC	3-7
Signal Conditioner CDV-900A High frequency response, 500 kHz Easy operation	1	Yes	Yes	(Constant voltage) A		DC to 500 kHz	Digital	DC amplifier function provides a maximum	100 to 240 VAC	3-9
Signal Conditioner CDA-900A High frequency response, 500 kHz Easy operation	1	Yes	Yes	(Constant current) S		2 C 3 3 S N 12	Digital	gain of 10000 times.	10.5 to 15 VDC	3-3

Multi-channel

		Chan	nels				Meas	uring Ta	argets			Outred leterfore		Power p	D
Models	6	8	14	16	Strain	Voltage	Pulse	Thermo couple	Piezo- electric Sensor	Poten- tiometer	LPF	Output	Interface	Supply	Pages
Multi Signal Conditioner MCF-B NEW		8		16	Yes		Yes	Yes	Yes			Analog ±5 V	RS-485	10 to 30 VDC AC adapter (Optional accessory)	3-11
Easy operation Compact Signal Conditioner CDV-400B Series Compact & lightweight	6	8	14		Yes	Yes	Yes			Yes	Yes	Analog ±2 V	_	11 to 30 VDC AC adapter (Optional accessory)	3-15

Other

DPM-911B/912B/913C

Strain Amplifier

High stability High accuracy Easy operation

- Easy operation greatly reduce the working hours.
- •Digital switch makes setting easy and the value set is easily seen even when power is off.
- High voltage output of ±10 V and high SN ratio are ensured.
- •Vertical bar meter is easy to check.
- ●The HPF cancels the effect of slow changes, such as temperature drift of gages or sensors.
- Sensitivity of TEDS compatible transducers is automatically registered.
- •Input and output are isolated.
- Sensitivity is automatically set with the actual load calibration function.
- Built-in check function on bridge circuit
- ●Broad frequency response DC to 10 k Hz (913C)
- ●Input Open Detection Function (913C)

Models

Models	Carrier Wave Frequencies	Frequency Response	SN Ratio
DPM-911B	5 kHz	DC to 2.5 kHz	54dB _{P-P} or more*1
DF WEST ID	J KI IZ	DC 10 2.5 KHZ	60dB _{P-P} or more*2
DPM-912B	12 kHz	DC to 5 kHz	53dB _{p-p} or more*1
DFIVI-912B	12 KHZ	DC to 3 kHz	58dB _{P-P} or more*2
DPM-913C	28 kHz	DC to 10 kHz	48dB _{P-P} or more*3
DF W-913C	20 KI IZ	DC to 10 KHZ	53dB _{p-p} or more*2

- *1 RTI: Within 2 ×10⁻⁶ strain_{PP} , when 500 ×10⁻⁶ strain is input, outputs 10.00 V.

 *2 when 1000 ×10⁻⁶ strain is input, outputs 10.00 V.

 *3 RTI: Within 3.9 ×10⁻⁶ strain_{PP} , when 500 ×10⁻⁶ strain is input, outputs 10.00 V.

[Common Condition] Bridge Excitation : 2 V_{rms} , Bridge Resistance: 120 Ω ,

Power Supply

Models etc.	Power Supply	
DPM-xxxx	90 to 110 VAC (Approx. 12 VA: 100 VAC)	
DPM-xxxx A115	108 to 132 VAC (Approx. 12 VA: 115 VAC)	
DPM-xxxx A200	180 to 220 VAC (Approx. 12 VA: 200 VAC)	
DPM-xxxx A230	207 to 253 VAC (Approx. 12 VA: 230 VAC)	
An optional DC power cable	10.5 to 15 VDC (Approx. 0.6 A: 12 VDC)	
P-69 is required.	10.5 to 15 VDC (Approx. 0.6 A. 12 VDC)	
xxxx: Part of model, example: 911B		

Specifications

Specifications	
Measuring Targets	Strain gages, strain-gage transducers
Channels	Circultura a constituti in considerate la considera
	Simultaneous operation is available by using multiple units.
Compatible Bridge Resistance	
Gage Factor	2.00 fixed
Bridge Excitation	2 V _{rms} , 0.5 V _{rms} , switchable
Balance Adjustment	Resistance: Within ±2% (±10000 ×10 ⁻⁶ strain)
D. I.	Capacity: Within 2000 pF
Balance Adjustment Method	Resistance: Auto balance Accuracy: Within ±0.5 ×10 ⁻⁶ strain
	(When 500 ×10 ⁻⁶ strain is input, outputs 10 V,
	excitation voltage: 2 V _{ms})
	Capacitance: CST method
	(Capacitance self-tracking)
Nonlinearity	Within ±0.1% FS
0 1 11 1	Within ±0.2% FS (913C)
Output Impedance Calibration Strain (CAL)	Approx. 2 Ω ±(1 to 9999 ×10 ⁻⁶ strain)
Calibration Strain (CAL)	Setting: CAL switch (4-digital switch)
	Accuracy: Within $\pm (0.5\% + 0.5 \times 10^{-6} \text{ strain})$
	Within ±(0.5% + 1×10 ⁻⁶ strain)(913C)
	Applicable scope of CAL accuracy:
	±(10 to 9999) ×10 ⁻⁶ strain
Sensitivity Adjustment	Sensitivity is set in combination with CAL and
	VOLTAGE OUT switches (4-digit digital switches). CAL switch range: 100 to 9999 ×10 ⁻⁶ strain by
	1 ×10 ⁻⁶ strain step
	(Set with CAL switches)
	VOLTAGE OUT switch range: 1.00 to 10.00 by
	0.01 V step
	Accuracy: Within ±0.5%
	Within (±0.5% + 5 mV) (913C)
	(When Bridge Excitation is 2 V _{ms}) Range: ×200 to ×20000
Fine Sensitivity Adjustmen	
Tille Scristavity Adjustilleri	
	See table below.
Frequency Response	See table below. Deviation: ±10%
Frequency Response LPF Transfer characterist	See table below. Deviation: ±10% ic: 2nd order Butterworth
LPF Transfer characterist Cutoff frequencies:	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at L Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±11 OUTPUT B: ±10	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more)
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at L Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±11 OUTPUT B: ±10	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more)
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) O V (Load resistance $5 \text{ k}\Omega$ or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A:±1 OUTPUT B:±10 Stability Temperature	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2 V (Load resistance $5 \text{ k}\Omega$ or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05\%$ /°C
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2 dero point: Within $\pm 0.1 \times 10^6$ strain per °C 2 dero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) 5 desiritivity: Within $\pm 0.05\%$ °C 2 dero point: Within $\pm 0.05\%$ °C 3 dero point: Within $\pm 0.05\%$ °C
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2V (Load resistance $5 \text{ k}\Omega$ or more) 2Vero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05\%$ °C Zero point: Within $\pm 0.05\%$ °C
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 0 V (Load resistance 5 k Ω or more) 2 ero point: Within $\pm 0.1 \times 10^6$ strain per °C 2 ero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) 5 ensitivity: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 3 ero point: Within $\pm 0.5\%$ /24 h
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps uttoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 Sero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05 \times 10^6$ strain/24 h (913C) Sensitivity: Within $\pm 1.0 \times 10^6$ strain/24 h (913C) Sensitivity: Within $\pm 0.05\%$ FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /power fluctuation $\pm 10\%$
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 0.0
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table bele Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps DV (Load resistance 5 k Ω or more) UV (Load resistance 5 k Ω or more) V(Load resistance 5 k Ω or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.5\%$ /°C Zero point: Within $\pm 0.5\%$ /°C Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.5\%$ /FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /Power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /Power fluctuation $\pm 10\%$ Stability condition: When 500×10^6 strain is input, outputs 10.00 V.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Cattenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table below OUTPUT A: ±11 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 VA	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10 ⁶ strain per °C 2ero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Sensitivity: Within ±0.5%/°C Zero point: Within ±0.5%/°C Zero point: Within ±0.3%/24h Zero point: Within ±0.3%/24h Sensitivity: Within ±0.3%/24h Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: With
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps DV (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁻⁶ strain per °C Zero point: Within ±0.2 ×10 ⁻⁶ strain per °C (913C) Sensitivity: Within ±0.5 ×10 ⁻⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁻⁶ strain/24 h Zero point: Within ±0.3%/24h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Setability condition: When 500 ×10 ⁻⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 4 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 7 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 10 V (Load resistance 5 k Ω or more) 11 V (Load resistance 5 k Ω or more) 12 V (Load resistance 5 k Ω or more) 13 V (Load resistance 5 k Ω or more) 14 V (Load resistance 5 k Ω or more) 15 V (Load resis
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 4 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 7 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 10 V (Load resistance 5 k Ω or more) 11 V (Load resistance 5 k Ω or more) 12 V (Load resistance 5 k Ω or more) 13 V (Load resistance 5 k Ω or more) 14 V (Load resistance 5 k Ω or more) 15 V (Load resis
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Over Input Indication	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ov. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h (913C) Sensitivity: Within ±0.3%/24h 2ero point: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.35%/°C Zero point: Within ±0.35%/°C Zero point: Within ±0.05%/°C Zero point: Within ±0.05%/°C Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case AC for 1 minute between AC power supply and case 14½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ power fluctuation ±10% Sensitivity: Within ±0.05% Fs/power fluctuation ±10% Sensitivity: Within ±0.05% (Fs/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ Power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.3%/24h Zero point: Within ±0.3%/24h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between MC power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ Power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10 ⁶ strain per °C 2ero point: Within ±0.2 ×10 ⁶ strain per °C 2ero point: Within ±0.5%/°C 2ero point: Within ±0.5%/°C 2ero point: Within ±0.3%/24h 2ero point: Within ±0.3%/24h 2ero point: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case AC for 1 diplicated display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Catternation: -12 ± 10 Attenuation: -12 ± 10 Cutoff freque SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 V// 1000 V// Output Voltage Indication Over Input Indication Check Functions Input Open Detection Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. D V (Load resistance 5 kΩ or more) DV (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10° strain per °C Zero point: Within ±0.2 ×10° strain per °C Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case A 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ 1000 V/ Output Voltage Indication Check Functions Input Open Detection Function Remote Functions Remote Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×0°C Zero point: Within ±0.5 ×0°C Sensitivity: Within ±0.05%/PC Zero point: Within ±0.05%/PS Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration strain output execute (CAL), key lock
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Catternation: -12 ± 10 Attenuation: -12 ± 10 Cutoff freque SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 V// 1000 V// Output Voltage Indication Over Input Indication Check Functions Input Open Detection Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×0°C Zero point: Within ±0.5 ×0°C Sensitivity: Within ±0.05%/PC Zero point: Within ±0.05%/PS Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration strain output execute (CAL), key lock

TEDS	Reads the sensor TEDS information, and
	sets the rated output to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Actual Load Calibration	Sets actual load input to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Vibration Resistant	5 to 200 Hz, with 29.4 m/s^2 (3 G) in X, Y and Z
	directions for 12 cycles, 10 min/cycle
Impact Resistant	15 G, 11 ms or less, in X, Y and Z directions,
	every 3 cycles
Operating Temperature	-10 to 50°C
Operating Humidity	20 to 85% (Non-condensing)
Storage Temperature	-30 to 70°C
Power Supply	See table on the page 3-5
Dimensions 49 W ×128	3.5 H ×262.5 D mm (Excluding protrusions)
Panel-cut o	dimensions: 50 W ×113 H mm
Weight Approx. 1.	2 kg

Standard Accessories

Output cable U-08, U-59, 1 each AC power cable P-25 (With 2-pin conversion plug CM-52) Fuse (Midget type 0.5 A, 1 A) Instruction manual Simple manual sticker

Optional Accessories

Extension cables N-81 to N-85 Bridge boxes DB, DBB, and DBS Housing case YC-A Noise filter F-7B, F-BNC Amplifier stand FA-1B Shielded conversion cable N-117

To Ensure Safe Usage

The bridge check function shows the error information - that indicates the wire-breaking location - on the monitor. Note that if 2 or more wires are broken, the bridge check function shows the error information of only one wire.

Wire-breaking locations	Error
A (Red)	Er-a
B (White)	Er-b
C (Black)	Er-c
D (Green)	Er-d
3 wires or more	Er-b

Panel

Dimensions

Outline

1-channel

Multi-channel

DC Amplifier

DC Amplifier

Models	Channels	Measuring Targets		Bridge Excitation		Frequency	Indicators	Features	Power	Pages
Models	Criamicis		Voltage	DC	DC AC Response		malcators	reatures	Supply	ruges
DC Amplifier										
DA-710A Isolated High accuracy	2		Yes	_	_	DC to 10 kHz	_	I/O isolated Allowable common mode voltage: ±300 V Allowable max. input voltage: ±110 V	100 VAC	3-17

Outline

1-channel

Multi-channel

DC Amplifier

Other

DPM-911B/912B/913C

Strain Amplifier

High stability High accuracy Easy operation

- Easy operation greatly reduce the working hours.
- •Digital switch makes setting easy and the value set is easily seen even when power is off.
- High voltage output of ±10 V and high SN ratio are ensured.
- •Vertical bar meter is easy to check.
- ●The HPF cancels the effect of slow changes, such as temperature drift of gages or sensors.
- Sensitivity of TEDS compatible transducers is automatically registered.
- •Input and output are isolated.
- Sensitivity is automatically set with the actual load calibration function.
- Built-in check function on bridge circuit
- ●Broad frequency response DC to 10 k Hz (913C)
- ●Input Open Detection Function (913C)

Models

Models	Carrier Wave Frequencies	Frequency Response	SN Ratio
DPM-911B	5 kHz	DC to 2.5 kHz	54dB _{P-P} or more*1
DF WEST ID	J KI IZ	DC 10 2.5 KHZ	60dB _{P-P} or more*2
DPM-912B	12 kHz	DC to 5 kHz	53dB _{p-p} or more*1
DFIVI-912B	12 KHZ	DC to 3 kHz	58dB _{P-P} or more*2
DPM-913C	28 kHz	DC to 10 kHz	48dB _{P-P} or more*3
DF W-913C	20 KI IZ	DC to 10 KHZ	53dB _{p-p} or more*2

- *1 RTI: Within 2 ×10⁻⁶ strain_{PP} , when 500 ×10⁻⁶ strain is input, outputs 10.00 V.

 *2 when 1000 ×10⁻⁶ strain is input, outputs 10.00 V.

 *3 RTI: Within 3.9 ×10⁻⁶ strain_{PP} , when 500 ×10⁻⁶ strain is input, outputs 10.00 V.

[Common Condition] Bridge Excitation : 2 V_{rms} , Bridge Resistance: 120 Ω ,

Power Supply

Models etc.	Power Supply	
DPM-xxxx	90 to 110 VAC (Approx. 12 VA: 100 VAC)	
DPM-xxxx A115	108 to 132 VAC (Approx. 12 VA: 115 VAC)	
DPM-xxxx A200	180 to 220 VAC (Approx. 12 VA: 200 VAC)	
DPM-xxxx A230	207 to 253 VAC (Approx. 12 VA: 230 VAC)	
An optional DC power cable	10.5 to 15 VDC (Approx. 0.6 A: 12 VDC)	
P-69 is required.	10.5 to 15 VDC (Approx. 0.6 A. 12 VDC)	
xxxx: Part of model, example: 911B		

Specifications

Specifications	
Measuring Targets	Strain gages, strain-gage transducers
Channels	Circultura a constituti in considerate la considera
	Simultaneous operation is available by using multiple units.
Compatible Bridge Resistance	
Gage Factor	2.00 fixed
Bridge Excitation	2 V _{rms} , 0.5 V _{rms} , switchable
Balance Adjustment	Resistance: Within ±2% (±10000 ×10 ⁻⁶ strain)
D. I.	Capacity: Within 2000 pF
Balance Adjustment Method	Resistance: Auto balance Accuracy: Within ±0.5 ×10 ⁻⁶ strain
	(When 500 ×10 ⁻⁶ strain is input, outputs 10 V,
	excitation voltage: 2 V _{ms})
	Capacitance: CST method
	(Capacitance self-tracking)
Nonlinearity	Within ±0.1% FS
0 1 11 1	Within ±0.2% FS (913C)
Output Impedance Calibration Strain (CAL)	Approx. 2 Ω ±(1 to 9999 ×10 ⁻⁶ strain)
Calibration Strain (CAL)	Setting: CAL switch (4-digital switch)
	Accuracy: Within $\pm (0.5\% + 0.5 \times 10^{-6} \text{ strain})$
	Within ±(0.5% + 1×10 ⁻⁶ strain)(913C)
	Applicable scope of CAL accuracy:
	±(10 to 9999) ×10 ⁻⁶ strain
Sensitivity Adjustment	Sensitivity is set in combination with CAL and
	VOLTAGE OUT switches (4-digit digital switches). CAL switch range: 100 to 9999 ×10 ⁻⁶ strain by
	1 ×10 ⁻⁶ strain step
	(Set with CAL switches)
	VOLTAGE OUT switch range: 1.00 to 10.00 by
	0.01 V step
	Accuracy: Within ±0.5%
	Within (±0.5% + 5 mV) (913C)
	(When Bridge Excitation is 2 V _{ms}) Range: ×200 to ×20000
Fine Sensitivity Adjustmen	
Tille Scristavity Adjustilleri	
	See table below.
Frequency Response	See table below. Deviation: ±10%
Frequency Response LPF Transfer characterist	See table below. Deviation: ±10% ic: 2nd order Butterworth
LPF Transfer characterist Cutoff frequencies:	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at L Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±11 OUTPUT B: ±10	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more)
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at L Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±11 OUTPUT B: ±10	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more)
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) O V (Load resistance $5 \text{ k}\Omega$ or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A:±1 OUTPUT B:±10 Stability Temperature	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2 V (Load resistance $5 \text{ k}\Omega$ or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05\%$ /°C
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2 dero point: Within $\pm 0.1 \times 10^6$ strain per °C 2 dero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) 5 desiritivity: Within $\pm 0.05\%$ °C 2 dero point: Within $\pm 0.05\%$ °C 3 dero point: Within $\pm 0.05\%$ °C
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance $5 \text{ k}\Omega$ or more) 2V (Load resistance $5 \text{ k}\Omega$ or more) 2Vero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05\%$ °C Zero point: Within $\pm 0.05\%$ °C
Frequency Response LPF Transfer characterist	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 0 V (Load resistance 5 k Ω or more) 2 ero point: Within $\pm 0.1 \times 10^6$ strain per °C 2 ero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) 5 ensitivity: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 2 ero point: Within $\pm 0.5\%$ /°C 3 ero point: Within $\pm 0.5\%$ /24 h
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps uttoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 Sero point: Within $\pm 0.1 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.05 \times 10^6$ strain/24 h (913C) Sensitivity: Within $\pm 1.0 \times 10^6$ strain/24 h (913C) Sensitivity: Within $\pm 0.05\%$ FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /power fluctuation $\pm 10\%$
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 5 k Ω or more) 0.0 V (Load resistance 0.0
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table bele Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps DV (Load resistance 5 k Ω or more) UV (Load resistance 5 k Ω or more) V(Load resistance 5 k Ω or more) Zero point: Within $\pm 0.1 \times 10^6$ strain per °C Zero point: Within $\pm 0.2 \times 10^6$ strain per °C (913C) Sensitivity: Within $\pm 0.5\%$ /°C Zero point: Within $\pm 0.5\%$ /°C Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.3\%$ /24h Zero point: Within $\pm 0.5\%$ /FS/power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /Power fluctuation $\pm 10\%$ Sensitivity: Within $\pm 0.05\%$ /Power fluctuation $\pm 10\%$ Stability condition: When 500×10^6 strain is input, outputs 10.00 V.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Cattenuation: -12 ± 1 HPF Cutoff freque SN Ratio See table below OUTPUT A: ±11 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 VA	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10 ⁶ strain per °C 2ero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Sensitivity: Within ±0.5%/°C Zero point: Within ±0.5%/°C Zero point: Within ±0.3%/24h Zero point: Within ±0.3%/24h Sensitivity: Within ±0.3%/24h Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: With
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps DV (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁻⁶ strain per °C Zero point: Within ±0.2 ×10 ⁻⁶ strain per °C (913C) Sensitivity: Within ±0.5 ×10 ⁻⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁻⁶ strain/24 h Zero point: Within ±0.3%/24h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Setability condition: When 500 ×10 ⁻⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 4 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 7 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 10 V (Load resistance 5 k Ω or more) 11 V (Load resistance 5 k Ω or more) 12 V (Load resistance 5 k Ω or more) 13 V (Load resistance 5 k Ω or more) 14 V (Load resistance 5 k Ω or more) 15 V (Load resis
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Control of the Cutoff frequencies: Attenuation: -12 ± 1 HPF Cutoff frequencies: SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 VA 1000 VA	See table below. Deviation: $\pm 10\%$ ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ± 1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. 0 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 2 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 3 V (Load resistance 5 k Ω or more) 4 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 5 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 6 V (Load resistance 5 k Ω or more) 7 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 8 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 9 V (Load resistance 5 k Ω or more) 10 V (Load resistance 5 k Ω or more) 11 V (Load resistance 5 k Ω or more) 12 V (Load resistance 5 k Ω or more) 13 V (Load resistance 5 k Ω or more) 14 V (Load resistance 5 k Ω or more) 15 V (Load resis
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Over Input Indication	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ov. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h (913C) Sensitivity: Within ±0.3%/24h 2ero point: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.35%/°C Zero point: Within ±0.35%/°C Zero point: Within ±0.05%/°C Zero point: Within ±0.05%/°C Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Sensitivity: Within ±0.05%/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case AC for 1 minute between AC power supply and case 14½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ power fluctuation ±10% Sensitivity: Within ±0.05% Fs/power fluctuation ±10% Sensitivity: Within ±0.05% (Fs/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ Power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table beld Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ Output Voltage Indication Check Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.3%/24h Zero point: Within ±0.3%/24h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between MC power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch.
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10 ⁶ strain per °C Zero point: Within ±0.2 ×10 ⁶ strain per °C (913C) Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5 ×10 ⁶ strain/24 h Zero point: Within ±0.5%/°C Zero point: Within ±0.5%/ Power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Sensitivity: Within ±0.05% (FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between AC power supply and case a 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only)
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at content of the content of	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps bw. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10 ⁶ strain per °C 2ero point: Within ±0.2 ×10 ⁶ strain per °C 2ero point: Within ±0.5%/°C 2ero point: Within ±0.5%/°C 2ero point: Within ±0.3%/24h 2ero point: Within ±0.3%/24h 2ero point: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Sensitivity: Within ±0.05%/FS/power fluctuation ±10% Stability condition: When 500 ×10 ⁶ strain is input, outputs 10.00 V. AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case AC for 1 diplicated display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Catternation: -12 ± 10 Attenuation: -12 ± 10 Cutoff freque SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 V// 1000 V// Output Voltage Indication Over Input Indication Check Functions Input Open Detection Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps ow. D V (Load resistance 5 kΩ or more) DV (Load resistance 5 kΩ or more) Zero point: Within ±0.1 ×10° strain per °C Zero point: Within ±0.2 ×10° strain per °C Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.5 ×10° strain/24 h Zero point: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05% FS/power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case A 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration
LPF Transfer characterist Cutoff frequencies: Amplitude ratio at c Attenuation: -12 ±1 HPF Cutoff freque SN Ratio See table belo Output OUTPUT A: ±1 OUTPUT B: ±10 Stability Temperature Time Power supply Withstand Voltage 1000 V/ 1000 V/ Output Voltage Indication Check Functions Input Open Detection Function Remote Functions Remote Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×0°C Zero point: Within ±0.5 ×0°C Sensitivity: Within ±0.05%/PC Zero point: Within ±0.05%/PS Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration strain output execute (CAL), key lock
Frequency Response LPF Transfer characterist Cutoff frequencies: Amplitude ratio at Least Catternation: -12 ± 10 Attenuation: -12 ± 10 Cutoff freque SN Ratio See table belowed Output OUTPUT A: ± 11 OUTPUT B: ± 10 Stability Temperature Time Power supply Withstand Voltage 1000 V// 1000 V// Output Voltage Indication Over Input Indication Check Functions Input Open Detection Functions	See table below. Deviation: ±10% ic: 2nd order Butterworth 10, 30, 100, 300 Hz, 1 k Hz and FLAT - 6 steps utoff point: -3 ±1 dB dB/oct. ncies: 0.2 Hz, OFF - 2 steps by. 0 V (Load resistance 5 kΩ or more) 0 V (Load resistance 5 kΩ or more) 2ero point: Within ±0.1 ×10° strain per °C 2ero point: Within ±0.2 ×10° strain per °C (913C) Sensitivity: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×10° strain/24 h 2ero point: Within ±0.5 ×0°C Zero point: Within ±0.5 ×0°C Sensitivity: Within ±0.05%/PC Zero point: Within ±0.05%/PS Sensitivity: Within ±0.05% FS/power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Sensitivity: Within ±0.05%/Power fluctuation ±10% Stability condition: When 500 ×10° strain is input, outputs 10.00 V. AC for 1 minute between measuring bridge and case AC for 1 minute between Mc power supply and case AC for 1 minute between AC power supply and case 1 4½ digit digital display (7-segment LED) 11-segment LED bar meter Output voltage display flashing (4½ digit digital display only) Bridge check When the input is open, output saturates to the negative side. (913C only) Locks all keys other than POWER switch. (Allows settings on CAL and VOLTAGE OUT switches to be changed.) Capable of controlling the following functions. Balance adjustment execute (BAL), calibration strain output execute (CAL), key lock

TEDS	Reads the sensor TEDS information, and
	sets the rated output to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Actual Load Calibration	Sets actual load input to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Vibration Resistant	5 to 200 Hz, with 29.4 m/s^2 (3 G) in X, Y and Z
	directions for 12 cycles, 10 min/cycle
Impact Resistant	15 G, 11 ms or less, in X, Y and Z directions,
	every 3 cycles
Operating Temperature	-10 to 50°C
Operating Humidity	20 to 85% (Non-condensing)
Storage Temperature	-30 to 70°C
Power Supply	See table on the page 3-5
Dimensions 49 W ×128	3.5 H ×262.5 D mm (Excluding protrusions)
Panel-cut o	dimensions: 50 W ×113 H mm
Weight Approx. 1.	2 kg

Standard Accessories

Output cable U-08, U-59, 1 each AC power cable P-25 (With 2-pin conversion plug CM-52) Fuse (Midget type 0.5 A, 1 A) Instruction manual Simple manual sticker

Optional Accessories

Extension cables N-81 to N-85 Bridge boxes DB, DBB, and DBS Housing case YC-A Noise filter F-7B, F-BNC Amplifier stand FA-1B Shielded conversion cable N-117

To Ensure Safe Usage

The bridge check function shows the error information - that indicates the wire-breaking location - on the monitor. Note that if 2 or more wires are broken, the bridge check function shows the error information of only one wire.

Wire-breaking locations	Error
A (Red)	Er-a
B (White)	Er-b
C (Black)	Er-c
D (Green)	Er-d
3 wires or more	Er-b

Panel

Dimensions

Outline

1-channel

Multi-channel

DC Amplifier

1-channel

DC Amplifier

Other

CDV-900A, CDA-900A

Signal Conditioner

High S/N is ensured by the strain DC amplifiers

- Easy operation greatly reduces the working hours.
- High sensitivity (Up to 10000 times)
- Fast response (DC to 500 kHz)
- ●Long-distance testing (Up to 2 km)
- Excellent nonlinearity (Within ±0.01%FS)
- ●Universal power supply (CDV/CDA-900A) (100 to 240 VAC or 10.5 to 15 VDC)
- TEDS compatible
- Distinguishes TEDS and remote sensing automatically.
- Low noise (30% reduction when compared to conventional models)

■Block diagram

^{*}Output noise will increase in case of combining with a torque transducer.

Models

Models	CDV-900A	CDV-900A-DC	CDA-900A	CDA-900A-DC
Excitation Modes	Constant voltage		Constant current *1	
Bridge Excitation *2	1, 2, 5, 10 V			3, 16.7 mA 4.3, 28.6 mA
Applicable Bridge Resistance	60 to 1000 Ω		120,	350 Ω
User's Function	Cable-resistance compensation (Cable resistance in one way 0 to 200.0 Ω) Setting the remote sensing "ALWAYS ON"		compe (Bridge re	esistance nsation esistance: 1000 Ω)
Remote Sensing	Yes *3			
Cable Extension	Up to 2 km *4 (Using a sensing cable)		Up to 2	2 km *5
CE Directive		Yes		Yes
Power Supply	100 to 240 VAC 10.5 to 15 VDC	10.5 to 15 VDC	100 to 240 VAC 10.5 to 15 VDC	10.5 to 15 VDC

- *1: 60.0 to 1000.0Ω : By using the user-specified registration function) By using the user-specified registration function
- *2: Setting by DIP switch 1 to 4 on rear panel
- *3: Performs BAL switch, CAL switch, and key-lock function
- *4: By a 6-conductor (0.5 mm²) shielded cable
- *5: By a 4-conductor (0.5 mm²) cable

Specifications

Specifications		
Measuring Targets	Strain gages, strain-gage	transducers and voltage
Channels	1	
Applicable Bridge F	Resistance See table.	
Gage Factor	2.00 fixed	
Bridge Excitation	See table.	
Balancing Range(BA	AL) Within ±2%	(±10000×10 ⁻⁶ strain)
Balancing Method	Auto-balanc	е
	Accuracy: ±1	m/m
	[At sensitive	of 10V/1000×10 ⁻⁶ strain]
	Saved in nor	volatile memory
Nonlinearity	Within ± 0.01%FS	
Input Impedance	$10~\text{M}\Omega + 10~\text{M}\Omega$ or more	2
Output Impedance	Approx. 2 Ω	
Calibration (CAL)	Equivalent strain: ±(1 to	9999 ×10 ⁻⁶ strain)
	DC voltage: ± (10 to 999	
		4-digital switch)
	Accuracy: Within ± (0.2	2%+0.5 ×10 ⁻⁶ strain)
	Within ± (0.1	%+5.0 μVrti)
Sensitivity Adjustme	ent Sensitivity is set in co	mbination with CAL and
		nes (4-digit digital switches)
	CAL switch range: 100 t	
	1 ×10	O ⁻⁶ strain step
VOLTAGE OUT switch range: 1.00 to 10.00 by 0.01 V step		
Accuracy: Within ± (0.5% + 5 mV)		
Range: ×200 to ×10000		
Fine Sensitivity Adju	ustment Range: 1 to 1/2	2.5
Frequency Response	e DC to 500 kHz	
	(Amplitude de	viation: 1, -3 dB)
Low-pass Filter(LPF)		
	Cutoff frequencies: 10,	100, 1 k, 10 k, 100 k Hz and
		T - 6 steps
	Amplitude ratio at cuto	ff point: -3 ±1 dB
	Attenuation: -24 ±1 dB/	oct.
High-pass Filter(HPF	Cutoff frequencies: 0.2	Hz , OFF - 2 steps
Output		d resistance: 5 kΩ or more)
	OUTPUT B: ± 10 V (Load	I resistance: 5 kΩ or more)
Noise	Low-pass filter	Noise (RTI)
	FLAT	40 μVp-p or less
	100 kHz	16 μVp-p or less
	10 kHz	6 μVp-p or less
	1 kHz	4 μVp-p or less
	100 Hz 10 Hz	3 μVp-p or less
<u> </u>		2 μVp-p or less
	At the hridge excitation: 2 V a	nd bridge resistance: 120 Ω,

when 1000×10-6 strain is input, outputs 10 V.]

- /
W
\sim
_
_
4
_
┍
6
_
н.
W
\sim
£
ш
£
\mathbf{U}
U
~
П.

table. table. table. 200 Hz, with 29.4 m/s² (3 G) in X, Y
table. 200 Hz, with 29.4 m/s² (3 G) in X, Y
200 Hz, with 29.4 m/s ² (3 G) in X, Y
- 1
Z directions for 12 cycles, 10 min/cycle
i, 11 ms or less, in X, Y
Z directions, every 3 cycles
:o 50 °C
85% (Non-condensing)
:o 70 °C
to 240 VAC, approx. 8 VA (At 100 VAC)
to 15 VDC, approx. 4 W (At 12 VDC)
A/CDV-900A-DC: DC power supply only)
V × 128.5 H × 262.5 D mm
uding protrusions)
rox. 1.0 kg
A-DC only)
ctive 2014/30/EU (EMC)
ctive 2011/65/EU, (EU)2015/863
Clive 2011/03/LU, (LU)2013/003

Standard Accessories

Output cable U-08, U-59 AC power cable P-25 (With 2-pin conversion plug CM-52, CDV/CDA-900A only)
DC power cable P-69 (CDV/CDA-900A-DC only) Ferrite core x 5 (CDV/CDA-900A-DC only)
Instruction manual

Optional Accessories

Input cable U-37 Extension cables N-81 to N-85 Housing case YC-A Amplifier stand FA-1B AC adapter SA-10A-AMP (CDV/CDA-900A-DC only)

Dimensions

Safe Input

CMRR

Stability

Safe Common Mode Input $\pm 10 \text{ V}$

Temperature

Power supply

Withstand Voltage (CDV/CDA-900A only)

and case Output Voltage Display 4½ digit digital display (7-segment LED)

switch.

function

Time

Over Input Indication

Check Functions

Key Lock Function

Remote Functions

TEDS

± 15 V

100 dB or more

Zero point: ±1 ×10⁻⁶ strain per °C Sensitivity: ±0.01%/°C

Zero point: ±5 ×10⁻⁶ strain/24 h Sensitivity: ±0.05%/24 h

Zero point: ±0.05%FS/power fluctuation ±10% Sensitivity: ±0.05%/power fluctuation ±10% [when 1000×10⁻⁶ strain is input, outputs 10.00 V.]

1 kVAC for 1 min between AC power supply

For prohibiting operations other than POWER

(However, the setting values of the CAL switch

Performs BAL switch, CAL switch, and key-lock

Loads the TEDS information of the sensor and

sets the rated output to the output voltage of

and VOLTAGE OUT switch can be changed.)

11-segment LED bar graph meter

Output voltage: Flickers (4 1/2 digits, digital display only)

Bridge resistance check

the VOLTAGE OUT switch.

the VOLTAGE OUT switch.

Actual Load Calibration Sets the actual load to the output voltage of

CDV-900A, CDA-900A (CDA-900A is the same in dimensions.)

Outline

1-channel

Multi-channel

DC Amplifier

MCF-B

Multi Signal Conditioner

8 or 16 channels

Simple-operation amplifier for various fields.

- Easy operation greatly reduces the working hours.
- ●4-digit CAL switch.
- •Hardly affected by noise.
- Various fixing fixtures and handles.
- ●You can set and control the MCF-B from your PC.
- ●Input Open Detection Function (DPM-91A/92A)

The MCF-B is a portable amplifier and builds a highperformance system by using conditioner cards. The CAL LOCK function keeps outputting the calibration values.

System Content

■Unit Base

MCF-8B (For measurement of up to 8 conditioner cards) MCF-16B (For measurement of up to 16 conditioner cards)

■Conditioner Cards*

DPM-91A/91A-I (Strain Amplifier Card,

carrier frequency 5 kHz)

DPM-92A/92A-I (Strain Amplifier Card,

carrier frequency 12 kHz)

(The suffix "-I" means with feature of robustness against inverter noise.)

CDV-90A (Signal Conditioner Card) CTA-90A (Thermocouple Card) CCA-90A (Charge Amplifier Card) CFV-90A (F/V Converter Card)

- *The carrier frequencies are different. Please be sure DPM-91A and DPM-92A are not mounted in the same unit base.
- * When using strain gages, use bridge boxes.
- * When mounting the CTA-90A and an empty channel exists, be sure to mount the dummy card.
- *The software for the command control functions should prepared by yourself. We have released the control commands.
- *To use the command control functions, you may require to update the firmware of conditioner cards.

Note that the update should be handled by Kyowa (with charge).

Specifications

Multi Signal Conditio	ner MCF-B			
Number of Condition				
16 (MCF-16B)				
Applicable Conditioner Cards				
	Card Model	Compatible Firmware		
	DPM-91A, DPM-91A-I DPM-92A, DPM-92A-I	Ver.03.00 or later		
	CDV-90A	Ver.03.00 or later		
	CTA-90A	Ver.01.02 or later		
	CFV-90A	Ver.03.01 or later		
	CCA-90A	Ver.03.00 or later		
Monitor Meter	Indicate output voltage o	of selected any channel		
	by 1-digit sign and 4-dig			
-	When error occurs, erro			
	indicated.			
Control Switch	(Front)			
Control Switch	, ,	annels that indicate on		
	the monitor			
	BAL: Balance adjustme			
	channels simulta			
	· · · · · · · · · · · · · · · · · · ·	n output is executed all		
		simultaneously.		
	KEY LOCK: When set to			
		e available.		
	(Rear)			
	OSC select: To select t			
	internal o			
	COM change-over: To	change open or short		
	be	tween COM terminal		
	an	d GND terminal.		
Channel Indication	CH LED lights up when th	ne channel is monitored.		
Key-lock Indication	KEYLOCK LED lights up w	hen Key-lock set to ON.		
PHYSICAL QUANTITY	'Indication			
	PHYSICAL QUANTITY LE	D lights up when the		
	conditioner card in TEDS	mode.		
Master Indication	OSC INT LED lights up w	hen use DPM card and		
	when OSC select switch			
	oscillator.			
Other Function	Automatically select carr	ier frequency according		
	to the types of the conn			
Command Control Fu				
Signaling System	RS-485 half duplex syste	m		
Communication Speed				
Character Length	8 bits			
Parity	None			
Stop Bit	1 bit			
Delimiter	CR: Command transmiss	ion to the MCE P		
Delimiter				
Davidso ID	CR+LF: Data transmission			
Device ID	0 to F (up to 16 units car	n be controlled by one		
	computer)			
	*Device IDs are set using			
	monitor display section			
Communication Range	<u> </u>			
Command	Start command control			
	End command control			
	Select monitor display ch	nannel		
	Get card type			
	Get connected models			
	Get version			
	Get error number			
	Get voltage			
	Execute balance adjustm	nent (DPM-90A series.		
	CDV-90A)	, , , , , , , , , , , , , , , , , , , ,		
	Set calibration output			
	(DPM-90A series, CDV-9	90A. CTA-90A CFV-90A		
	CCA-90A)	,		
	Set internal gain			
	(DPM-90A series, CDV-9	20Δ CTΔ-90Λ CE\/-90Λ		
	CCA-90A)	, on, CIM-30M, CFV-30A		
	CCA-90A)			

Dynamic Strain Measuring Instruments	
Outline	

1-channel

Model			equencies	c · -
		DC to 2.5 kHz (Dev		Carrier Frequencies 5 kHz
DPM-91 <i>A</i> DPM-92 <i>A</i>		DC to 5 kHz (Devia		12 kHz
		s Strain gages (As	separate bride	ge box is necessary.)
	901	Strain-gage trar		ge 20/13 (1eee334) y.,
Channels		1		
Compatible	e Bridg	e Resistance 60	to 1000 Ω	
Gage Facto	r	2.00 fixed		
Bridge Exci	itation	2 V _{rms}		
Balance Ac	ljustme			
		Resistance: W	ithin ±2% (±	10 k ×10 ⁻⁶ strain)
		Capacitance: 20		
			ridge resistar	nce 120 Ω)
Balance Ac	ljustme	ent Methods		
			uto balance	ار مع معم معربا
			ithin ±0.5 ×10	volatile memory)
				put to 100 ×10 ⁻⁶
			rain input)	put to 100 × 10
			<u> </u>	ce self-tracking)
Nonlineari	tv	Within ±0.2% F		ee serr tracking,
Calibration		±(1 to 9999 ×10) ⁻⁶ strain)	
		Accuracy: Withi		.5 ×10 ⁻⁶ strain)
Sensitivity	Adjust	ment		
Sensitivit	y is set i	in combination wi	th a 4-digit IN	IPUT switch and
a 3-digit				
		range: 1.00 to 5.00		
		nge: 100 to 9999 ×	:10 ⁻⁶ strain in	1 ×10 ⁻⁶ strain step
		n ±(0.5%+5 mV)		
Range: x				
		djustment ×0.4 to		1
		acteristic: 2nd orde		
		ncies: 10, 30, 100, tio at cutoff point:		na FLAT (6 steps)
		(-12 ±1) dB/oct.	-3 ±1 UB	
	t set at			
		requencies: 0.2 Hz	. OFF (2 steps	5)
SN Ratio	Conditi	ons: When 200 ×1	0 ⁻⁶ strain inpu	ut and 5V output,
	120 Ω :	short.		
	DPM-91	A: ≥49 dB _{P-P}		
	DPM-91	A-I: ≥44 dBp-p		
	DPM-92	2A: ≥45 dBp-p		
		2A-I: ≥40 dBp-p		
Stability	Temper			×10 ⁻⁶ strain per °C
	<u>-</u> .		Within ±0.05	
	Time	Zero point:	vvitnin ± i × i	
			\\/:+b:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 ⁻⁶ strain per 8 h
	(Mhan	Sensitivity:	Within ±0.3%	10 ⁻⁶ strain per 8 h 6/8 h
		Sensitivity: 100 ×10 ⁻⁶ strain in	put and 5 V c	10 ⁻⁶ strain per 8 h 6/8 h output, zero point is
	measur	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short	put and 5 V c	10 ⁻⁶ strain per 8 h 6/8 h output, zero point is
	measur 120 Ω k	Sensitivity: 100×10^{-6} strain in ed by 120Ω short oridge.)	put and 5 V c , sensitivity is	10 ⁻⁶ strain per 8 h 6/8 h output, zero point is measured by
Output	measur 120 Ω k Dual ou	Sensitivity: 100×10^{-6} strain in ed by 120Ω short oridge.)	put and 5 V c , sensitivity is Itage is outpu	10 °strain per 8 h 6/8 h butput, zero point is measured by ut to BNC connector
Output	measur 120 Ω k Dual ou and cor	Sensitivity: 100×10^{-6} strain in ed by 120 Ω short bridge.) httput (The same vo	put and 5 V c , sensitivity is ltage is outpu it connector.)	10 ⁶ strain per 8 h 6/8 h output, zero point is measured by at to BNC connector
Output	measur 120 Ω k Dual ou and cor Output	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) Itput (The same voncentralized outpu	put and 5 V c , sensitivity is Itage is outpu It connector.) V or over (Loa	10-6strain per 8 h 6/8 h output, zero point is measured by It to BNC connector d 5k Ω or more)
Output	measur 120 Ω k Dual ou and cor Output Zero ad	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) Itput (The same voncentralized outpurable) voltage: Within ±5 justment: Within =	put and 5 V c , sensitivity is Itage is outpu It connector.) V or over (Loa	10-6strain per 8 h 6/8 h output, zero point is measured by It to BNC connector d 5k Ω or more)
Output Output Off Output Im	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) htput (The same vo hecentralized output voltage: Within ±5 justment: Within ± ion Available he 2 Ω or less	put and 5 V c , sensitivity is Itage is outpu it connector.) V or over (Loa £0.1 V or over	10-6strain per 8 h 6/8 h output, zero point is measured by It to BNC connector d 5k Ω or more)
Output Output Off	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 \Omega short oridge.) httput (The same vo hecentralized output voltage: Within ±5 justment: Within = https://www.sion.com/southers/libraries	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loa ±0.1 V or over	10-estrain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more)
Output Output Off Output Im	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) httput (The same vo heentralized output voltage: Within ±5 justment: Within ± ion Available hee 2 Ω or less e 500 VAC with	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and output and output sensitivity is sensitive to the control of the control of the control output and output sensitivity is sensitive to the control of the control output and output sensitivity is sensitive to the control output sensitivity is sensitivity in the control of the co	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more)
Output Output Off Output Im	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) httput (The same vo heentralized output voltage: Within ±5 justment: Within ±6 ion Available hee 2 Ω or less e 500 VAC with Between ing	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loa e.0.1 V or over thin 1 min in: out and output and case.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more)
Output Output Off Output Im Withstand	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega \) short oridge.) toput (The same vo ncentralized outpu voltage: Within ±5 justment: Within ± ion Available ise 2 \(\Omega \) or less e 500 VAC wit Between in Between ou	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loate). It V or over thin 1 min in: out and output and case, tput and case, tput and case.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more)
Output Output Off Output Im Withstand Over Input	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega \) short oridge.) Intput (The same vo incentralized output voltage: Within ±5 justment: Within ±5 justment: Within ±5 ion Available ise 2 \(\Omega \) or less e 500 VAC with Between input Between input Between oution LED lights up	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case, o.	10 °strain per 8 h %/8 h cutput, zero point is measured by It to BNC connector d 5k Ω or more) T
Output Output Off Output Im Withstand	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega \) short oridge.) Itput (The same vo ncentralized outpu voltage: Within ±5 justment: Within ± ion Available ie 2 \(\Omega \) or less e 500 VAC wit Between inp Between inp Between out tion LED lights up Reads the se	put and 5 V c, sensitivity is ltage is output connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case o.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) r ut.
Output Output Off Output Im Withstand Over Input	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 \(\Omega \) short oridge.) Itput (The same vo ncentralized outpu voltage: Within ±5 justment: Within ± ion Available ie 2 \(\Omega \) or less e 500 VAC wit Between inp Between inp Between out tion LED lights up Reads the se sets the rate	put and 5 V c, sensitivity is ltage is output to connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case, o. onsor's TEDS in d output to C	10 °strain per 8 h %/8 h putput, zero point is measured by It to BNC connector d 5k Ω or more) T
Output Output Off Output Im Withstand Over Input TEDS	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) Intput (The same voncentralized output voltage: Within ±5 justment: Within ±6 ion Available is 2 Ω or less e 500 VAC with Between in Between in Between out	put and 5 V c, sensitivity is large is output to connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case to consor's TEDS in d output to Carge.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) r ut. e. Information then DUTPUT switch as
Output Output Off Output Im Withstand Over Input	measur 120 Ω k Dual ou and cor Output Zero ad f Funct i pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega \) short oridge.) Itput (The same vo ncentralized outpu voltage: Within ±5 justment: Within ± ion Available ie 2 \(\Omega \) or less e 500 VAC wit Between inp Between inp Between oution LED lights up Reads the se sets the rate output volta	put and 5 V c, sensitivity is ltage is output to connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case, o. onsor's TEDS in d output to C tige.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) r ut.
Output Office Output Im Withstand Over Input TEDS	measur 120 Ω k Dual ou and cor Output Zero ad f Functi pedanc Voltag	Sensitivity: 100 ×10 ⁻⁶ strain in ed by 120 Ω short oridge.) Itput (The same vo ncentralized outpu voltage: Within ±5 justment: Within ± ion Available ie 2 Ω or less e 500 VAC with Between input Between out tion LED lights up Reads the se sets the rate output volta output volta	put and 5 V c, sensitivity is ltage is output to connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case to consor's TEDS in d output to C tage.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) ut. e. information then putPUT switch as gative direction
Output Output Off Output Im Withstand Over Input TEDS	measur 120 Ω k Dual ou and cor Output Zero ad f Functi pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega\$ short oridge.) Itput (The same vo neentralized outpu voltage: Within ±5 justment: Within ±	put and 5 V c , sensitivity is Itage is output it connector.) V or over (Loa e0.1 V or over chin 1 min in: out and output out and case tput and case tput and case tput and case tput in the ne s open. ctor: NDIS410.	10-6strain per 8 h 6/8 h cutput, zero point is measured by It to BNC connector d 5k Ω or more) r ut. e. information then cutput switch as gative direction 2 (7 pins) connector
Output Office Output Im Withstand Over Input TEDS	measur 120 Ω k Dual ou and cor Output Zero ad f Functi pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega\$ short oridge.) Intput (The same vo neentralized output voltage: Within ±5 justment: Within	put and 5 V c, sensitivity is ltage is output to connector.) V or over (Loa ±0.1 V or over thin 1 min in: out and output and case, tput and case, tput and case to consor's TEDS in d output to C tage. tput in the ness open.	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) ut. e. information then butput switch as gative direction 2 (7 pins) connector
Output Output Off Output Im Withstand Over Input TEDS Input Open Det	measur 120 Ω k Dual ou and cor Output Zero ad f Functi pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega\$ short oridge.) Intput (The same vo neentralized output voltage: Within ±5 justment: Within	put and 5 V c , sensitivity is Itage is output it connector.) V or over (Loa e0.1 V or over chin 1 min in: out and output out and case tput and case tput and case tput and case co. insor's TEDS in d output to C ige. tput in the ne s open. ctor: NDIS410 nector: BNC cc x 170 D mm (I	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) ut. e. Information then DUTPUT switch as gative direction 2 (7 pins) connector
Output Output Off Output Im Withstand Over Input TEDS Input Open Det Connector Dimension	measur 120 Ω k Dual ou and cor Output Zero ad f Functi pedanc Voltag	Sensitivity: 100 ×10° strain in ed by 120 \(\Omega\$ short oridge.) Intput (The same voncentralized output voltage: Within ±5 justment: Within ±6 justment: Within ±6 ion Available in e 2 \(\Omega\$ or less e 500 VAC with Between in great Between in great Between output voltage is est the rate output voltantion Saturates ou when input input connection in the connection of the connection	put and 5 V c , sensitivity is Itage is output it connector.) V or over (Loa e0.1 V or over chin 1 min in: out and output out and case tput and case tput and case tput and case co. insor's TEDS in d output to C ige. tput in the ne s open. ctor: NDIS410 nector: BNC cc x 170 D mm (I	10-6strain per 8 h 6/8 h cutput, zero point is measured by at to BNC connector d 5k Ω or more) f ut. e. nformation then putPUT switch as gative direction 2 (7 pins) connector excluding protrusions

	Perform zero-point adjustment
	· · · · · · · · · · · · · · · · · · ·
	(DPM-90A series, CDV-90A, CFV-90A, CCA-90A
	Perform internal gain adjustment
	(DPM-90A series, CDV-90A, CTA-90A, CCA-90)
	Set bridge voltage (CDV-90A)
	Switch TEDS mode on/off (DPM-90A series,
	CDV-90A, CCA-90A)
	Load TEDS information (DPM-90A series,
	CDV-90A, CCA-90A)
	Set low-pass filter cutoff frequency
	(DPM-90A series, CDV-90A, CCA-90A)
	Set high-pass filter cutoff frequency
	(DPM-90A series, CDV-90A)
	Select thermocouple type (CTA-90A)
	Switch measurement range (CFV-90A)
	Set input coupling (CFV-90A)
	Set trigger level (CFV-90A)
Switch Status in Co	mmand Control Mode
	Switch operations are locked (except for
	[CH SELECT] switches).
Notification in Com	mand Control Mode
Notification in Com	[KEY LOCK] LED flashes.
Exiting Command C	
Exiting Communa C	Canceled by command or using switch.
Sattings After Evitin	ng Command Control Mode
Settings After Exitin	<u>-</u>
Vilouation Desistance	Retains most recent settings.
Vibration Resistance	49.03 m/s ² (5 G) 5 to 55 Hz
O (1 T)	15 cycles each in X, Y, Z directions, 1 min/cycle
Operating Temperature	
· ·	20 to 85% (Non-condensing)
Storage Temperature	
Power Supply	10 to 30 VDC
Current Consumption	1.5 A or less (MCF-8B)
	3 A or less (MCF-16B)
	(Fully equipped with CDV-90A cards,
	bridge excitation = 2 V, bridge resistance 60 Ω ,
	power supply 15 VDC.)
Connector	Centralized output connector (MDR connector
	pincount 26, female)
	BNC connector
Dimensions	246.4 W × 101 H × 170 D mm (Excluding
	protrusions, MCF-8B)
	440 W × 101 H × 170 D mm (Excluding
	protrusions, MCF-16B)
Weight	Approx. 3.5 kg, unit base only (MCF-8B)
vveigiii	
	Approx. 5 kg
	(With 8 DPM-91A cards mounted, MCF-8B)
	Approx. 5 kg, unit base only (MCF-16B)
	Approx. 8 kg
	(Mith 16 DDM 01A cards mounted MCE 16D)
C!:	(With 16 DPM-91A cards mounted, MCF-16B)

Standard Accessories DC power cable P-76 (Approx. 1.8 m) Ground wire P-72 (Approx. 5 m)
Synchronous cable U-59 (Approx. 1.5 m)
Connector for concentralized output cable

Compliance

Directive 2014/30/EU (EMC)

Directive 2011/65/EU, (EU) 2015/863 (10 restricted substances) (RoHS)

Spare fuse instruction manual (CD-R)

Optional Accessories AC adapter UEA360-1540 1 channel dummy card MCF-DUMMY2 RS-485 extension cable for MCF N-136

(Approx. 1 m) RS-485 communication Y cable for MCF N-137 (Approx. 0.3 m)

Independent left/right rack fixture MCF-BKT MCF handle fixture MCF-HANDLE Fixture for JIS rack for MCF-16B MCF-JIS Fixture for DIN rack for MCF-16B MCF-DIN

Standard Accessories Output cable U-59

Signal Conditione Measuring Targets	Strain gages (A separate bridge box is necessary.
	Strain-gage transducers
Channels	1
Gage Factor	2.00 fixed
	t Within ±2% (±10 k ×10 ⁻⁶ strain)
Balance Adjustmer	
balance Aujustinei	Resistance: Auto balance
	(Compensated value stored in
	nonvolatile memory) Accuracy: Within ±1 ×10 ⁻⁶ strain (With excitation)
	10 V, 5 V output to 200 ×10 ⁻⁶ strain in
Nonlinearity	
Nonlinearity	Within ±0.05% FS
Input Impedance	20 MΩ or more
Output Impedance Calibration Strain	
Calibration Strain	±(1 to 9999 ×10 ⁻⁶ strain)
C 141- 14 A -11 4-	Accuracy: Within ±(0.3% + 1×10 ⁻⁶ strain)
Sensitivity Adjustr	
	n combination with a 4-digit INPUT switch and
a 3-digit OUTPUT	
	range: 1.00 to 5.00 V in 0.01-V step
-	nge: 200 to 9999 ×10 ⁻⁶ strain in 1 ×10 ⁻⁶ strain step
Accuracy: Within	
Range: ×200 to ×	
	ustment ×0.4 to ×1
Compatible Bridge	Resistance 300Ω to $1 k\Omega$ (With excitation 10 V)
	60Ω to 1 kΩ (With excitation 2 V)
Bridge Excitation	2 or 10 VDC, switchable
_	e DC to 50 kHz (Deviation +0.5, -3 dB)
Output	Dual output (The same voltage is output to
	BNC connector and concentralized output connect
	Output voltage: Within ± 5 V or over (Load $5k \Omega$ or m
	Zero adjustment: Within ±0.1 V or over
Low-pass Filter	Transfer characteristic: 2nd order Butterworth
	Cutoff frequencies: 10, 30, 100, 300, 1 k, 3 k, 10k H
	and FLAT (8 steps)
	Amplitude ratio at cutoff point: $-3 \pm 1 \text{ dB}$
	Attenuation: (-12 ± 1) dB/oct.
High-pass Filter	Cutoff frequencies: 0.2 Hz, OFF (2 steps)
Noise	10×10^{-6} strain _{P-P} (When 10 V bridge excitation
	voltage, 200 ×10 ⁻⁶ strain input, 5 V output and
	350 Ω short)
Stability	Temperature Zero point: Within±1 ×10-6 strain per
	Sensitivity: Within±0.02%/°C
	Time Zero point: Within±10×10 ⁻⁶ strain per
	Sensitivity: Within±0.1%/8 h
	(When 2 V bridge excitation voltage, 1000×1000
	strain input and 5 V output. Zero point is measur
	by 350 Ω short, sensitivity is measured by 350
	bridge.)
Output Off Function	-
	500 VAC for 1 min, between the following two
	positions respectively.
	(Input and output, input and case, output and ca
Over Input Indicati	
TEDS	Reads the sensor's TEDS information then s
	the rated output to OUTPUT switch as out
	voltage.
Input Open Detection Fund	tion Saturates output in the negative direction
1	when input is open.
Connector Shape	Input connector: NDIS4102 (7 pins) connec
connector snape	Output connector: BNC connector
Dimensions	24 W × 96 H × 170 D mm (Excluding protrusic
Weight	
vvciuiit	Approx. 150 g
	Directive 2011/65/511/51/2015/062
Compliance	Directive 2011/65/EU, (EU)2015/863 (10 restricted substances) (RoHS)

Thermocouple Card	CTA-90A
	couples K, T, J, N, E, and R (Thermocouple
	resistance is 1 k Ω or less)
Measuring Range	K: -200 to 1300 °C, T: -200 to 400 °C
	J: -200 to 1200 °C, N: -200 to 1300 °C
	E: -200 to 1000 °C, R: 0 to 1700 °C
Channels	1
Reference Junction	$\pm 2.5 ^{\circ}\text{C} (-10 \text{to} 50 ^{\circ}\text{C})$
	±2.5 C (-10 to 50 C) ±1 °C (20 ± 3 °C)
Frequency Response	DC to 10 Hz (Deviation: +0.5, -1 dB)
	Within ±0.5% FS (With type K, J, N, E, R)
	Within ±1%FS (With type T)
Calibration	100 to 1700 °C from step up of 100 °C
	(Full scale depends on the type of thermocouple
	Accuracy: Within ±0.5% FS
Sensitivity Adjustme	
	Sensitivity is set in combination with a 2-digit
	INPUT switch and a 3-digit OUTPUT switch. OUTPUT switch range: 1.00 to 5.00 V in 0.01-V step
	INPUT switch range: 100 to 1700 °C in 100 °C step
Fine Sensitivity Adju	
Frequency Response	
Noise	30 mV _{P-P} or less (Input short)
Stability Temp	perature Zero point: Within ±0.05%FS/°C
	Sensitivity: Within ±0.05%/°C
Time	
	Sensitivity: Within ±0.5%/8 h
M(:414	(Using K type, 5 V output to 1300 °C) 500 VAC for 1 min, between the
Withstand Voltage	following two positions respectively:
	Input and output, input and case,
	output and case
Over Input Indicatio	
Connector Shape	Input connector: One-touch type
	terminal block
	Output connector: BNC connector
	Applicable wire
	Solid wire: ϕ 0.4 mm to ϕ 1.3 mm (UL AWG16 to 26)
	Twisted wire: ϕ 0.2 mm ² to ϕ 1.3 mm ²
	(UL AWG16 to 24)
Dimensions	24 W × 96 H × 170 D mm
	(Excluding protrusions)
Weight	Approx. 140 g
Compliance	Directive 2011/65/EU, (EU)2015/863
	(10 restricted substances) (RoHS)
Standard Accessories	Output cable U-59
Charge Amplifier Ca	rd CCA 00A
Channels	1
Measuring Targets	IEPE accelerometer, Max. ±5000 mV (built-in
	amplifier type)
	*Charge converter is necessary when using a
	charge output accelerometer.
	Recommended item: Fuji ceramics corporation
	"CAC1R0"
Input	Input format: Unbalanced input
	Sensor supply: Built-in constant-current supply
	Constant current 4 mA Excitation voltage: Approx. 24 \
Frequency Response	e 0.2 Hz to 50 kHz (Deviation +1, -3 dB)
	Sensitivity is set in combination with a 4-digit
, ,,	INPUT switch and a 3-digit OUTPUT switch.
	INPUT switch range: 20 to 5000 mV in 1-mV step
	OUTPUT switch range: 1.00 to 5.00 V in 0.01-V step
	Accuracy: Within ±(0.5% +5 mV)
	Range: ×1 to ×250
Fine Sensitivity Adjustment	
Calibration (DC CAL)	±(1 to 5000 mV)
	Accuracy: Within ±0.3% FS

SEF	RING			
-----	------	--	--	--

	::	
Dynai	mic Str	ain
Measurin	g Instri	uments

1-channel

Multi-channel

DC Amplifier

Other

Low-pass Filter	Transfer characteristic: 2nd order Butterworth
	Cutoff frequencies: 300, 1k, 3k, 10k Hz and
	FLAT (5 steps)
	Amplitude ratio at cutoff point: -3 ±1 dB
	Attenuation: (-12 ±1) dB/oct.
Distortion Rate	Within 1% (When ±5 V output)
SN Ratio	48 dB _{P-P} or more (When 20 mV input and
	5 V output)
Stability Temperat	ure Zero point: Within ±0.5 mV per °C
	Sensitivity: Within ±0.05 %/ °C
Time	Zero point: Within ±5 mV per 8h
	Sensitivity: Within ±0.5 %/8h
TEDS	Reads the sensor's TEDS information then
	displays it on the monitor meter to the value
	that converted the output voltage inito the
	physical quantity.
Output	Dual output, both BNC connector and
	integrated connector output the same signal.
	Voltage output: ±5 V or more, when load
	resistance 5 kΩ or more
	Zero adjustment: -0.1 to 0.1 V or wider
Output Off Function	,
Output Impedance	2 Ω or less
Withstand Voltage	500 VAC for 1 min, between the following
	two positions respectively:
	Input and output, input and case, output
	and case
Over Input Indication	LED lights up.
Connector Shape	Input connector: BNC
	Output connector: BNC
Dimensions	$24 \mathrm{W} \times 96 \mathrm{H} \times 170 \mathrm{D}$ mm (Excluding protrusions
Weight	Approx. 140 g
Compliance	Directive 2011/65/EU, (EU)2015/863
•	(10 restricted substances) (RoHS)
Note) The specification	ons does not include the accuracy of the
optional charg	
Standard Accessories	
F/V Converter Card	CFV-90A
Channels	1
Measuring Targets	AC signal
	Pulse signal (including open collector signal)
Frequency Range	0.2 Hz to 100 kHz
	*When set to 1.0 V output and 20 kHz range,
	100 kHz input can measure as 5 V.
Input Voltage	±0.5 to ±50 V
Input Coupling	AC or DC
input coupling	Select by switch operation.

Trigger Level (Input Detection Level) 0.0 to 5.0 V in 0.1-V step

2 12 01 1633		100 KHZ, amplitude. ±0.5 V)
500 VAC for 1 min, between the following	Stability Temper	ature Zero point: Within ±0.01% FS per °C
two positions respectively:		Sensitivity: Within ±0.01%/°C
Input and output, input and case, output	Time	Zero point: Within ±0.05% FS per 8h
and case		Sensitivity: Within ±0.05%/8h
LED lights up.	Output	Dual output (The same voltage is output to
Input connector: BNC		BNC connector and concentralized output
Output connector: BNC		connector.)
$24 \mathrm{W} \times 96 \mathrm{H} \times 170 \mathrm{D} \mathrm{mm}$ (Excluding protrusions)		Output voltage: Within 0 to 5 V (Load 5 $k\Omega$
Approx. 140 g		or more)
Directive 2011/65/EU, (EU)2015/863		Zero adjustment: Within ±0.1 V
(10 restricted substances) (RoHS)	Output Off Function	on Available
ons does not include the accuracy of the	Output Impedanc	e 2 Ω or less
ge converter.	Withstand Voltag	e 500 VAC for 1 min, between the following
Output cable U-59		two positions respectively:
Output cable 0-33		Input and output, input and case, output and o
CFV-90A	Over Input Indication	on LED lights up.
1	Connector Shape	Input connector: NDIS4109 (Small round 9 pi
AC signal		Output connector: BNC
Pulse signal (including open collector signal)	Dimensions	$24\mathrm{W} \times 96\mathrm{H} \times 170\mathrm{D}$ mm (Excluding protrusic
0.2 Hz to 100 kHz	Weight	Approx. 140 g
*When set to 1.0 V output and 20 kHz range,	Note) When using	MCF-16B, CFV-90A maximum installed amount
100 kHz input can measure as 5 V.	are 12 units.	(When CFV-90A only installed.)
±0.5 to ±50 V	When using	mixed the other conditioner card, CFV-90A
AC or DC	maximum ins	stalled amount are 8 units.
Select by switch operation.	When using	MCF-8B, no restriction on the number of units t
Detection Level) 0.0 to 5.0 V in 0.1-V step	be installed.	
Trigger level is set from the 2-digit thumbwheel	Standard Accessorie	es Output cable U-59
switch.		Input connector plug 4109P
(When trigger level set to 5.1 V or more, trigger		
level saturates at 5.0 V.)		

Nonlinearity

Calibration (CAL)

Response Time

Noise

Within ±0.1% FS Sensitivity Adjustment (RANGE) 500, 1k, 2k, 5k, 10k, 20 kHz (6 steps)

thumbwheel switch).

(Setting Example)

100 kHz input.

Full scale of the range is output with the voltage set with the OUTPUT switch (3-digit

When "SET" is executed with RANGE set to 20 kHz and OUTPUT switch set to 1.0 V, 1.0 V output at 20 kHz input, 5.0 V output at

When frequency continuous: Less than one cycle of the input signal +25 μs or less (At the

When frequency cutoff: Less than two cycle of the input signal +25 µs or less (At the start of

(When input the signal: Square, frequency

Accuracy: Within ±(0.1% +5 mV)

100% or 50% of each RANGE Accuracy: Within ±0.5%

start of output voltage rising)

output voltage falling) Power Supply to Sensors 12 VDC ±10% (At load current is 50 mA or less.)

100 kHz, amplitude: ±0.5 V)

30 mVp-p or less

	Input and output, input and case, output and case			
Over Input Indication	1 LED lights up.			
Connector Shape	Input connector: NDIS4109 (Small round 9 pins)			
	Output connector: BNC			
Dimensions 24 W × 96 H × 170 D mm (Excluding protrus				
Weight Approx. 140 g				
Note) When using N	1CF-16B, CFV-90A maximum installed amount			
are 12 units. (\	When CFV-90A only installed.)			
When using mixed the other conditioner card, CFV-90A maximum installed amount are 8 units.				
be installed.				
Standard Accessories Output cable U-59				
Input connector plug 4109P				

Dimensions

CDV-400B Series

Compact Signal Conditioner

Compact and lightweight Suitable for an on-vehicle and mobile application.

- Signals of multiple units are output from a single integrated connector.
- Simultaneous calibration of all channels is possible on the unit base.

CDV-400B series is a multi-channel signal conditioner for measuring physical quantity such as strain, acceleration, load, voltage and frequency. Several conditioner cards are mounted to the unit base to configure an optimum measurement system for any application. The system operates on DC power, also an AC adapter SA-6A is available as an option.

The compact and lightweight design makes the system suitable for measurement on motorcycles, tractors, boats and wheelchairs.

Compact & lightweightMultiple channels

System content

Unit Bases CDV-456B/458B/464B

These unit bases are for slotting various conditioner cards, which have a monitor meter, a channel select switch for a monitor meter and an integrated output connector.

Signal Conditioner Units CV-10B/11B

These units are a signal conditioner with DC excitation voltage, which are connected to strain gage or strain-gage transducers to measure load, pressure, acceleration etc. The CV-11B is based on the auto balance method and the CV-10B is based on the manual balance method.

●LPF Module LFU-10B

This unit is used for removing unnecessary high frequency signals.

Potentiometer Unit CPT-11B

This unit is a unit to measure a rotation angle and speed together with a potentiometer. A power supply to measure a potentiometer resistance is built-in. Just connecting a potentiometer will start measurement.

F/V Converter Module CFV-11B

This unit is used for frequency-to-voltage conversion.

Outline

1-channel

Multi-channel

DC Amplifier

-
U
7
_
7
_
=
M
Q
mi
_
$\overline{}$
4

1-channel

Multi-channel

DC Amplifier

Other

Unit Bases CDV-456B/458B/464B				
Channels	CDV-456B: 6			
	CDV-458B: 8			
	CDV-464B: 14			
Power Supply	11 to 30 VDC			
	AC line with optional AC adapter SA-6A			
	(Except for CDV-464B)			
	For current consumption, see table below.			
	5			

Vibration Resistance 98.07 m/s² (10 G), 10 to 500 Hz (Amplitude 10 mm) Dimensions & Weight See table below.

		_	Dimensions	Weight (Approx.)	
	Models	Current Consumption*	(Excluding protrusions)	Unit Base Only	With full units of CV-11B
Ī	CDV-456B	0.5 A or less	115×59×130 mm	490 g	880 g
	CDV-458B	0.6 A or less	147×59×130 mm	530 g	1 kg
	CDV-464B	1.1 A or less	259×62×135 mm	880 g	1.8 kg

* At 12 VDC, with full units of CV-11B

Standard Accessories

Output cable U-59 (1 per channel), DC power cable P-65, integrated output connector HDEB-9P (HDAB-15P for CDV-464B), miniature screwdriver, fuse, instruction manual

Optional Accessories

AC adapter SA-6A, dummy panel DUMMY-400B-N

Signal Conditioner Units CV-10B/11B					
Channels	1				
Compatible Bridge R	Lesistance 120 to 1000 Ω, full bridge system				
Balance Adjustment	Range				
CV-11B	±1% (±5000 ×10 ⁻⁶ strain) or more				
	Fine zero trimmer provided				
CV-10B	$\pm 0.7\%$ ($\pm 3500 \times 10^{-6}$ strain) or more if bridge				
	resistance 120 Ω				
	$\pm 1\%$ ($\pm 5000 \times 10^{-6}$ strain) or more if bridge				
resistance 350 Ω					
Balance Adjustment	Methods				
CV-11B Auto balance					
Accuracy: Within ±2 ×10 ⁻⁶ strain					
	(At range 200 × 10 ⁻⁶ strain)				
CV-10B	Manual balance				
Bridge Excitation					
Sensitivity					
Output	±2 V or more (Load 5 kΩ or more)				
Nonlinearity	Within ±0.1% FS				
Range	5 steps of 200, 500, 1 k, 2 k, and 5 k ×10 ⁻⁶ strain				
Accuracy: Within ±1% FS					
Fine Sensitivity Adjustment					
	Continuously variable between $\times 1$ to $\times 1/2.5$				
Calibration (CAL)	Linked with selected range				
	10 steps of ±200, ±500, ±1 k, ±2 k,				
	and $\pm 5 \text{ k} \times 10^{-6} \text{ strain}$				
	Accuracy: Within ±0.5%				
Frequency Response	DC to 2.5 kHz (Deviation ±1 dB)				
Noise	8×10^{-6} strain p-p (See input, band noise value)				
Power Supply	From the unit base (Within ±30 mA)				
Weight	Approx. 65 g (CV-11B), approx. 55 g (CV-10B)				
Standard Accessories	Input cable U-09 (1 piece/unit)				

■LPF Module LFU-10	LPF Module LFU-10B				
Channels	1				
DC Gain	1:1 (Accuracy: Within ±0.1% FS)				
Nonlinearity	Within ±0.1% FS				
Cutoff Frequencies	5 steps of 10, 30, 100, 300 [Hz] and FLAT				
	Amplitude ratio at cutoff point: -3 ±1 dB				
Attenuation	(-12±1) dB/oct.				
Output	Voltage: ±2 V or more (Load 5 kΩ or more)				
	Current: ±10 mA or more (Load 30 Ω)				
SN Ratio	52 dB or more to output of ±2 V				
Power Supply	From the unit base (Within ±20 mA with no load)				
Weight	Approx. 45 g				
Standard Accessories					
Input cable (10 cm) with BNC connectors at both ends					

Frequency Response	DC to 100 Hz, ±0.5 dB
SN Ratio	46 dB or more to maximum output
Power Supply	From the unit base (Within ±30 mA)
Weight	Approx. 65 g
Standard Accessories Input co	able U-10 (1 piece/unit)
F/V Converter Module CFV-1	I1B
Channels	1
Input Signal	DC to 5 kHz (Square wave)
Output	Voltage: ±2 V or more
	(Load 5 k Ω or more)
Nonlinearity	Within ±0.1% FS
Range	5 steps of 0.5, 1, 2.5, 5 [kHz] and OFF
	Accuracy: Within ±0.5%
Calibration	Linked with selected range
	4 steps of 0.5, 1, 2.5 and 5 kHz
	Accuracy: Within ±0.5%
Fine Sensitivity Adjustment	Continuously variable between ×1
	and ×1/2.5
	Accuracy: Within ±0.5%
Response Time	30 ms or less
Withstand Voltage between	Input and Output
	250 V _{rms} or 700 V _{P-P} for one minute
Allowable Power Supply to I	nput Connector
	± 6 V, ± 30 mA (12 V power supply)
Power Supply	From the unit base (80 mA or less)
Weight	Approx. 73 g
Standard Accessories Input of	cable U-10 (1 piece/unit)

1 to 10 kΩ

resistance

Auto balance

Within ±0.1% FS

and ×1/2.5

Voltage: ±2 V or more

90% or more of potentiometer

(Load 5 kΩ or more)

4 steps of 10, 20, 50 [%] and OFF Accuracy: Within ±0.5%

Continuously variable between $\times 1$

Linked with selected range 7 steps of ± 10 , ± 20 , ± 50 and OFF

Accuracy: Within ±0.05%

Power Supply to Potentiometer Constant voltage of 1 V (Built-in)

■Potentiometer Unit CPT-11B

Balance Adjustment Methods

Fine Sensitivity Adjustment

Compatible Resistance

Balance Adjustment

Channels

Output

Range

Nonlinearity

Calibration

When mounting the modules, take care of the following limitations.

Mountable Units

Mounted	Power	Woulitable Offics			
Models	Supply	CDV-456B	CDV-458B	CDV-464B	
Wiodels	to Sensors			CH 1 to 7	CH 8 to 14
	Yes	2	2	2	2
CFV-11B	No	4	3	3	3
		Remaining channels accept units other than CZA-10B/11B.			
LFU-10B and other units mounted in combination		LFU-10B is mounted to even channels only.			
CFV-11B n	nustn't be m	ounted to the last channel.			

1-channel

Multi-channel

DA-710A

DC Amplifier

Highly accurate 2-channel isolated DC amplifiers

- Input-output isolation ensures excellent stability and makes it less affectable by noise.
- ●LPF enables measurement at high SN ratio.
- Highly accurate
- ●Allowable common mode voltage ±300 V and allowable max. input voltage ±110 V
- Voltage calibration function
- Moderate price

The DA-710A is a highly accurate 2-channel isolated DC amplifier which satisfies requirements for high input impedance, high gain accuracy and stability. Since the channels are isolated from each other, the DA-710A can effectively be used for measurement if the 2 channels are connected to different signal sources. In addition, input-output isolation ensures excellent stability and outstandingly minimizes noise effects. The allowable common mode voltage is ± 300 VDC, while setting the attenuation switch to 1/100 makes the allowable max. input voltage ± 110 VDC. Furthermore, high-frequency components are eliminated by the LPF for measurement at a high SN ratio.

Thus, the DA-710A is used for various purposes including general micro voltage measurement, temperature measurement in combination with a thermocouple, and as a preamplifier for recorders and data processors.

IsolatedHigh accuracy

Specifications

specifications	2				
Channels	2				
Input Modes	Differential, isolated between input and				
	output, and between channel and channel				
Isolation Methods	Optical (ATT 4 LOSS)				
Input Impedance	10 MΩ + 10 MΩ or more (ATT ×1 and OFF)				
	$1 \text{ M}\Omega + 1 \text{ M}\Omega \text{ or more (ATT} \times 1/100)$				
Gain	13 steps of 10, 20, 50, 100, 200, 500 (×1 and				
	×1/100) and OFF; continuously variable				
	between ×1 and ×2.5 or more				
	Gain accuracy: ±0.1% FS (ATT ×1)				
	±0.3% FS (ATT × 1/100)				
Stability Zero Balance	Within $\pm 5 \mu V_{RTI}$ / °C (With input shorted and gain 500)				
	Gain: Within ±0.02%/°C				
Nonlinearity	Within ±0.05% FS				
Frequency Response	DC to 10 kHz (+1, -3 dB)				
Output A	$\pm 10 \text{ V}$ (Load resistance 10 k Ω or more)				
Output B	$\pm 10 \text{ V}$ (Load resistance $10 \text{ k}\Omega$ or more)				
Output Impedance	1 Ω or less				
CMRR	120 dB or more (DC to 60 Hz)				
	(With balanced input of 1 k Ω , gain 500				
	and ATT ×1)				
Allowable Common Mod	de Voltage ±300 VDC or AC peak				
	Insulation resistance 1000 $M\Omega$ or more				
Allowable Max. Input Vo	oltage ±2 VDC or AC peak (ATT × 1)				
	±110 VDC or AC peak (ATT ×1/100)				
Zero Balance Adjustmer	nt Range (Output)				
	±5 V (OUT A and B linked)				
	±1 V (OUT B independent)				
Noise	10 μV _{P-P} (RTI) + 6 mV _{P-P} (RTO)				
	(With input shorted, gain 500 and ATT ×1)				
Calibration Voltage (Ou	tput) Within 4 V ±0.2%				
Settling Time	100 μs or less, output: Within ±0.1%				
Overload Recovery Time	e 100 μs or less, output: Within ±0.1%				
	nnels 10 μV _{P-P} (RTI) + 6 mV _{P-P} (RTO) or less				
	ejection Ratio 10 μV _{p-p} (RTI) + 6 mV _{p-p} (RTO) or less				
LPF Transfer characteristi	ic: 2nd order Butterworth				
Cutoff frequencies: 1	0, 30, 100, 300, 1 k Hz and FLAT (6 steps)				
Amplitude ratio at cu	utoff point: -3 ±1 dB				
Attenuation: (-12 ±1)) dB/oct.				
Operating Temperature					
Operating Humidity	20 to 80% (Non-condensing)				
Storage Temperature	-20 to 70°C				
Storage Humidity	5 to 95% (Non-condensing)				
Withstand Voltage	Between [Channel 1 input connector pin] and				
	[Output, case, AC power supply]: 1 kVAC for 1 min				
	Between [Channel 2 input connector pin] and				
	[Output, case, AC power supply]: 1 kVAC for 1 min				
	Between [AC power supply] and				
	[Output, case]: 1 kVAC for 1 min				
	Between [Channel 1 input] and				
	[Channel 2 input]: 1 kVAC for 1 min				
Power Supply	100 VAC, 4.5 VA				
Dimensions	49 W × 128.5 H × 262.5 D mm				
מווטומוושוויים					
Woight	(Excluding protrusions)				
Weight	Approx. 1.0 kg				
	ut cable U-108				
	tput cable U-63				
	power cable P-25 (With 2-pin conversion plug CM-52)				
	niature screwdriver				
	R (Instruction manual)				
Cim	pution manual				

Simplified manual

Housing case YC-A Amplifier stand FA-1B

Optional Accessories

Dynamic Strain Measuring Instruments

MEASURING INSTRUMENTS

Other

■Dimensions

1-channel

Optional Accessories for Dynamic Strain Measuring Instruments

●Portable Housing Case YC-A (For DPM-900 Series, CDV/CDA-900A, VAQ-700A, DA-710A)

YC-8A

Models

Models	Power Supply	Housing Units	Width [mm]	Depth [mm]	Height [mm]	
YC-3A	AC	3	179.3	336.9		
YC-3A-AC/DC	AC or DC	3			157.5	
YC-4A	AC	4	228.8			
YC-4A-AC/DC	AC or DC					
YC-6A	AC	6	327.8		147.5	
YC-6A-AC/DC	AC or DC					
YC-8A	AC	8	426.8		147.5	
YC-8A-AC/DC	AC or DC					

Specifications

Power Supply	100 VAC
	100 VAC or 12 VDC (YC-A-AC/DC)
Switches	Switches on the front panel
	Power SW, BAL SW, All-Channel CAL SW, and
	Key-lock SW
Terminals on Rear Panel	Remote switched on the rear panel
	Balance adjustment, calibration, key lock,
	and synchronized connection

- 1. No function to get status.
 2. The DPM-900 Series and CDV/CDA-900A SET function is not supported.
- 3. Not suitable for use in on-vehicle test.4. The unit may not be stood on its rear surface.

- 5. YC-3A/4A have a carrying handle. 6. CDV/CDA-900A-DC: For YC-A-AC/DC only

Standard Accessories

AC power cable P-17 (With 2-pin conversion plug CM-52) Instruction manual

Optional Accessories

Dummy panel for 1 channel YB-DUMMY Handle for YC-A

JIS rack mounting bracket YC-JIS (Supports YC-8A only) DIN rack mounting bracket YC-DIN (Supports YC-8A only)

Dimensions

YC-8A YC-3A

Noise Filters

To remove noise containing high-frequency components.

For input of all DPM series models

●F-BNC

For output of all DPM series models

Amplifier Stands

●FA-1B

DPM-900 series, DA-710A, CDV-900A CDA-900A, VAQ-700A

Bridge Boxes

●DB-120A

For details, see page 3-131.

Outline

1-channel

Multi-channel

DC Amplifier

Wireless Instruments

A wireless measuring instrument can save labor and measure rotating bodies by establishing a wireless connection between the measuring instrument and sensors or computers. We provide digital telemeters and a variety of other products to use in industrial measurement and laboratory research fields.

Wireless Instrument Selection Chart

Wireless connection between the measuring instrument and sensor

Models	Channels	Measuring Targets	Radio Certification	Radio Communication Distance (Max.)	Frequency Response (Max.)	Interfaces	Output	Pages
Digital Telemeter MRS-100 Series Transmitter Receiver Fast response	1	Strain (Gage, transducer) Voltage- output sensors Thermocouples	Japan the USA China Thailand Taiwan EU India Korea (Option)	50 m	DC to 370 Hz	USB	Analog ±5 V	3-23

Wireless connection between the measuring instrument and PC

Models	Channels Measuring Targets		Radio Certification	Compliance Standard	Frequency Response (Max.)	Interfaces	Pages
Compact Recorder CTRS-100 Series							
NEW	4 (Max.128)	Strain (Gage, transducer) Voltage- output sensors Thermocouples CAN (FD) signal	Japan the USA	IEEE 802.11 a/b/g/n/ac	100 kHz	Wireless USB LAN SD card	3-57
Shock Resistance 490 m/s² (50 G)							

