Dynamic Strain Measuring Instrument Selection Chart

1-channel

Models	Channels	Measuring Targets		Bridge Excitation		Frequency Response	Indicators	Features	Power Supply	Pages
		Strain	Voltage	DC	AC					
Strain Amplifier DPM-911B/912B/913C	1	Yes			Yes	DPM-911B DC to 2.5 kHz DPM-912B DC to 5 kHz DPM-913C DC to 10 kHz	Digital	I/O isolated	$\begin{aligned} & 100 \mathrm{VAC} \\ & 115 \mathrm{VAC} \\ & 200 \mathrm{VAC} \\ & 230 \mathrm{VAC} \\ & 10.5 \text { to } \\ & 15 \mathrm{VDC} \end{aligned}$	3-5
Strain Amplifier DPM-951A DPM-952A Robust against invert noise Easy operation	1	Yes			Yes	DPM-951A DC to 2 kHz DPM-952A DC to 5 kHz	Digital	Inverter noise reduction circuit I/O isolated	$\begin{aligned} & 100 \mathrm{VAC} \\ & 115 \mathrm{VAC} \\ & 200 \mathrm{VAC} \\ & 230 \mathrm{VAC} \\ & 10.5 \text { to } \\ & 15 \mathrm{VDC} \end{aligned}$	3-7
Signal Conditioner CDV-900A High frequency response, 500 kHz Easy operation	1	Yes	Yes					DC amplifier function	$\begin{aligned} & 100 \text { to } \\ & 240 \text { VAC } \end{aligned}$	
Signal Conditioner CDA-900A High frequency response, 500 kHz Easy operation	1	Yes	Yes					gain of 10000 times.	$\begin{aligned} & 10.5 \text { to } \\ & 15 \mathrm{VDC} \end{aligned}$	

Multi-channel

DPM-911B/912B/913C

Strain Amplifier

High stability
 High accuracy
 Easy operation

-Easy operation greatly reduce the working hours. -Digital switch makes setting easy and the value set is easily seen even when power is off.

- High voltage output of $\pm 10 \mathrm{~V}$ and high SN ratio are ensured.
- Vertical bar meter is easy to check.
-The HPF cancels the effect of slow changes, such as temperature drift of gages or sensors.
- Sensitivity of TEDS compatible transducers is automatically registered.
OInput and output are isolated.
- Sensitivity is automatically set with the actual load calibration function.
-Built-in check function on bridge circuit
-Broad frequency response DC to 10 k Hz (913C)
OInput Open Detection Function (913C)

Models

Models	Carrier Wave Frequencies	Frequency Response	SN Ratio
DPM-911B	5 kHz	DC to 2.5 kHz	54 dBp pp or more ${ }^{* 1}$
			$60 \mathrm{~dB} p$ po or more ${ }^{* 2}$
DPM-912B	12 kHz	DC to 5 kHz	53 dB p-p or more ${ }^{* 1}$
			58 dBp pp or more ${ }^{*}{ }^{2}$
DPM-913C	28 kHz	DC to 10 kHz	48 dBpp or more ${ }^{* 3}$
			53 dBp pp or more ${ }^{* 2}$

*1 RTI: Within 2×10^{-6} strain $_{p-p}$, when 500×10^{-6} strain is input, outputs 10.00 V .
*2 when 1000×10^{-6} strain is input, outputs 10.00 V .

* 3 RTI: Within 3.9×10^{-6} strainp-p, when 500×10^{-6} strain is input,
outputs 10.00 V .
[Common Condition] Bridge Excitation : 2 V rms, Bridge Resistance: 120Ω, LPF $=$ FLAT

Power Supply

Models etc.	Power Supply
DPM-xxxx	90 to 110 VAC (Approx. 12 VA: 100 VAC)
DPM-xxxx A115	108 to 132 VAC (Approx. 12 VA: 115 VAC)
DPM-xxxx A200	180 to 220 VAC (Approx. 12 VA: 200 VAC)
DPM-xxxx A230	207 to 253 VAC (Approx. 12 VA: 230 VAC)
An optional DC power cable P-69 is required.	10.5 to 15 VDC (Approx. 0.6 A: $12 \mathrm{VDC)}$
xxxx: Part of model, example: 911B	

Specifications

Measuring Targets	Strain gages, strain-gage transducers
Channels	1
	Simultaneous operation is available by using
multiple units.	
Compatible Bridge Resistance 60 to 1000Ω	

Compatible Bridge Resistance 60 to 1000Ω

Gage Factor	2.00 fixed
Bridge Excitation	$2 \mathrm{~V}_{\text {rms }} 0.5 \mathrm{~V}_{\mathrm{rms}}$, switchable
Balance Adjustment	Resistance: Within $\pm 2 \%$ ($\pm 10000 \times 10^{-6}$ strain)
	Capacity: Within 2000 pF
Balance Adjustment Method	Resistance: Auto balance
	Accuracy: Within $\pm 0.5 \times 10^{-6}$ strain
	(When 500×10^{-6} strain is input, outputs 10 V ,
	excitation voltage: $2 \mathrm{~V}_{\text {rms }}$)
	Capacitance: CST method
	(Capacitance self-tracking)
Nonlinearity	Within ± 0.1 \% FS
	Within $\pm 0.2 \%$ FS (913C)
Output Impedance	Approx. 2Ω
Calibration Strain (CAL)	\pm (1 to 9999×10^{-6} strain)
	Setting: CAL switch (4-digital switch)
	Accuracy: Within $\pm\left(0.5 \%+0.5 \times 10^{-6}\right.$ strain $)$
	Within $\pm\left(0.5 \%+1 \times 10^{-6}\right.$ strain)(913C)
	Applicable scope of CAL accuracy:
	$\pm(10$ to 9999$) \times 10^{-6}$ strain
Sensitivity Adjustment	Sensitivity is set in combination with CAL and
	VOLTAGE OUT switches (4-digit digital switches)
	CAL switch range: 100 to 9999×10^{-6} strain by
	1×10^{-6} strain step
	(Set with CAL switches)
	VOLTAGE OUT switch range: 1.00 to 10.00 by
	0.01 V step
	Accuracy : Within $\pm 0.5 \%$
	Within ($\pm 0.5 \%+5 \mathrm{mV})(913 \mathrm{C})$
	(When Bridge Excitation is 2 V rms)
	Range: $\times 200$ to $\times 20000$

Fine Sensitivity Adjustment Range: 1 to 1/2.5
Frequency Response See table below. Deviation: $\pm 10 \%$
LPF Transfer characteristic: 2nd order Butterworth Cutoff frequencies: $10,30,100,300 \mathrm{~Hz}, 1 \mathrm{k} \mathrm{Hz}$ and FLAT - 6 steps
Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$
Attenuation: $-12 \pm 1 \mathrm{~dB} /$ oct.
HPF Cutoff frequencies: 0.2 Hz , OFF - 2 steps
SN Ratio See table below.
Output OUTPUT A: $\pm 10 \mathrm{~V}$ (Load resistance $5 \mathrm{k} \Omega$ or more) OUTPUT B: $\pm 10 \mathrm{~V}$ (Load resistance $5 \mathrm{k} \Omega$ or more)
Stability Temperature Zero point: Within $\pm 0.1 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}$ Zero point: Within $\pm 0.2 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}(913 \mathrm{C})$ Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$

Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$	
Time	Zero point: Within $\pm 0.5 \times 10^{-6}$ strain $/ 24 \mathrm{~h}$
Zero point: Within $\pm 1.0 \times 10^{-6}$ strain/24 h (913C)	
Sensitivity: Within $\pm 0.3 \% / 24 \mathrm{~h}$	
Power supply Z	Zero point: Within $\pm 0.05 \% \mathrm{FS} /$ power fluctuation $\pm 10 \%$
Sensitivity: Within $\pm 0.05 \% /$ power fluctuation $\pm 10 \%$	
Stability condition: When 500×10^{-6} strain is input,	
outputs 10.00 V .	
Withstand Voltage 1000 VAC for 1 minute between measuring bridge and case	
1000 VAC for 1 minute between AC power supply and case	
Output Voltage Indication $41 / 2$ digit digital display (7-segment LED)	
11-segment LED bar meter	
Over Input Indication	Output voltage display flashing (41/2 digit digital
display only)	
Check Functions Bridge check	
Input Open Detection Function	When the input is open, output saturates to
the negative side. (913C only)	
Key Lock Functions	Locks all keys other than POWER switch.
(Allows settings on CAL and VOLTAGE OUT	
switches to be changed.)	
Remote Functions Capable of controlling the following functions.	
Balance adjustment execute (BAL), calibration	
strain output execute (CAL), key lock	
Synchronization Method	d Automatically determines internal (INT) or
	external (EXT) and manual setting.

TEDS	Reads the sensor TEDS information, and
	sets the rated output to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Actual Load Calibration	Sets actual load input to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Vibration Resistant	5 to 200 Hz , with $29.4 \mathrm{~m} / \mathrm{s}^{2}$ (3 G) in X, Y and Z
	directions for 12 cycles, 10 min /cycle
Impact Resistant	15 G, 11 ms or less, in X, Y and Z directions,
	every 3 cycles
Operating Temperature	-10 to $50^{\circ} \mathrm{C}$
Operating Humidity	20 to 85\% (Non-condensing)
Storage Temperature	-30 to $70^{\circ} \mathrm{C}$
Power Supply	See table on the page 3-5
Dimensions $49 \mathrm{~W} \times 128.5$.5 H $\times 262.5 \mathrm{D} \mathrm{mm}$ (Excluding protrusions)
Panel-cut	dimensions: $50 \mathrm{~W} \times 113 \mathrm{H} \mathrm{mm}$
Weight Approx. 1.2	2 kg

Extension cables $\mathrm{N}-81$ to $\mathrm{N}-85$
Bridge boxes DB, DBB, and DBS
Housing case YC-A
Noise filter F-7B, F-BNC
Amplifier stand FA-1B
Shielded conversion cable N-117

To Ensure Safe Usage

The bridge check function shows the error information - that indicates the wire-breaking location - on the monitor. Note that if 2 or more wires are broken, the bridge check function shows the error information of only one wire.

Wire-breaking locations	Error
A (Red)	Er-a
B (White)	Er-b
C (Black)	Er-c
D (Green)	Er-d
3 wires or more	Er-b

Dimensions

$\xrightarrow{24.5} \mathrm{DPM}-911 \mathrm{~B} / 912 \mathrm{~B} / 913 \mathrm{C}(\mathrm{DPM}-912 \mathrm{~B} / 913 \mathrm{C}$ is the same in dimensions.)

DC Amplifier

Models		Channels	Measuring Targets		Bridge Excitation		Frequency Response	Indicators	Features	Power Supply	Pages
			Strain	Voltage	DC	AC					
DC Amplifier DA-710A											
		2		Yes			DC to 10 kHz	-	mode voltage: $\pm 300 \mathrm{~V}$ Allowable max. input voltage: $\pm 110 \mathrm{~V}$	100 VAC	3-17
Isolated High accuracy											

DPM-911B/912B/913C

Strain Amplifier

High stability
 High accuracy
 Easy operation

-Easy operation greatly reduce the working hours. -Digital switch makes setting easy and the value set is easily seen even when power is off.

- High voltage output of $\pm 10 \mathrm{~V}$ and high SN ratio are ensured.
- Vertical bar meter is easy to check.
-The HPF cancels the effect of slow changes, such as temperature drift of gages or sensors.
- Sensitivity of TEDS compatible transducers is automatically registered.
OInput and output are isolated.
- Sensitivity is automatically set with the actual load calibration function.
-Built-in check function on bridge circuit
-Broad frequency response DC to 10 k Hz (913C)
OInput Open Detection Function (913C)

Models

Models	Carrier Wave Frequencies	Frequency Response	SN Ratio
DPM-911B	5 kHz	DC to 2.5 kHz	54 dBp pp or more ${ }^{* 1}$
			$60 \mathrm{~dB} p$ po or more ${ }^{* 2}$
DPM-912B	12 kHz	DC to 5 kHz	53 dB p-p or more ${ }^{* 1}$
			58 dBp pp or more ${ }^{*}{ }^{2}$
DPM-913C	28 kHz	DC to 10 kHz	48 dBpp or more ${ }^{* 3}$
			53 dBp pp or more ${ }^{* 2}$

*1 RTI: Within 2×10^{-6} strain $_{p-p}$, when 500×10^{-6} strain is input, outputs 10.00 V .
*2 when 1000×10^{-6} strain is input, outputs 10.00 V .

* 3 RTI: Within 3.9×10^{-6} strainp-p, when 500×10^{-6} strain is input,
outputs 10.00 V .
[Common Condition] Bridge Excitation : 2 V rms, Bridge Resistance: 120Ω, LPF $=$ FLAT

Power Supply

Models etc.	Power Supply
DPM-xxxx	90 to 110 VAC (Approx. 12 VA: 100 VAC)
DPM-xxxx A115	108 to 132 VAC (Approx. 12 VA: 115 VAC)
DPM-xxxx A200	180 to 220 VAC (Approx. 12 VA: 200 VAC)
DPM-xxxx A230	207 to 253 VAC (Approx. 12 VA: 230 VAC)
An optional DC power cable P-69 is required.	10.5 to 15 VDC (Approx. 0.6 A: $12 \mathrm{VDC)}$
xxxx: Part of model, example: 911B	

Specifications

Measuring Targets	Strain gages, strain-gage transducers
Channels	1
	Simultaneous operation is available by using
multiple units.	
Compatible Bridge Resistance 60 to 1000Ω	

Compatible Bridge Resistance 60 to 1000Ω

Gage Factor	2.00 fixed
Bridge Excitation	$2 \mathrm{~V}_{\text {rms }} 0.5 \mathrm{~V}_{\mathrm{rms}}$, switchable
Balance Adjustment	Resistance: Within $\pm 2 \%$ ($\pm 10000 \times 10^{-6}$ strain)
	Capacity: Within 2000 pF
Balance Adjustment Method	Resistance: Auto balance
	Accuracy: Within $\pm 0.5 \times 10^{-6}$ strain
	(When 500×10^{-6} strain is input, outputs 10 V ,
	excitation voltage: $2 \mathrm{~V}_{\text {rms }}$)
	Capacitance: CST method
	(Capacitance self-tracking)
Nonlinearity	Within ± 0.1 \% FS
	Within $\pm 0.2 \%$ FS (913C)
Output Impedance	Approx. 2Ω
Calibration Strain (CAL)	\pm (1 to 9999×10^{-6} strain)
	Setting: CAL switch (4-digital switch)
	Accuracy: Within $\pm\left(0.5 \%+0.5 \times 10^{-6}\right.$ strain $)$
	Within $\pm\left(0.5 \%+1 \times 10^{-6}\right.$ strain)(913C)
	Applicable scope of CAL accuracy:
	$\pm(10$ to 9999$) \times 10^{-6}$ strain
Sensitivity Adjustment	Sensitivity is set in combination with CAL and
	VOLTAGE OUT switches (4-digit digital switches)
	CAL switch range: 100 to 9999×10^{-6} strain by
	1×10^{-6} strain step
	(Set with CAL switches)
	VOLTAGE OUT switch range: 1.00 to 10.00 by
	0.01 V step
	Accuracy : Within $\pm 0.5 \%$
	Within ($\pm 0.5 \%+5 \mathrm{mV})(913 \mathrm{C})$
	(When Bridge Excitation is 2 V rms)
	Range: $\times 200$ to $\times 20000$

Fine Sensitivity Adjustment Range: 1 to 1/2.5
Frequency Response See table below. Deviation: $\pm 10 \%$
LPF Transfer characteristic: 2nd order Butterworth Cutoff frequencies: $10,30,100,300 \mathrm{~Hz}, 1 \mathrm{k} \mathrm{Hz}$ and FLAT - 6 steps
Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$
Attenuation: $-12 \pm 1 \mathrm{~dB} /$ oct.
HPF Cutoff frequencies: 0.2 Hz , OFF - 2 steps
SN Ratio See table below.
Output OUTPUT A: $\pm 10 \mathrm{~V}$ (Load resistance $5 \mathrm{k} \Omega$ or more) OUTPUT B: $\pm 10 \mathrm{~V}$ (Load resistance $5 \mathrm{k} \Omega$ or more)
Stability Temperature Zero point: Within $\pm 0.1 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}$ Zero point: Within $\pm 0.2 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}(913 \mathrm{C})$ Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$

Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$	
Time	Zero point: Within $\pm 0.5 \times 10^{-6}$ strain $/ 24 \mathrm{~h}$
Zero point: Within $\pm 1.0 \times 10^{-6}$ strain/24 h (913C)	
Sensitivity: Within $\pm 0.3 \% / 24 \mathrm{~h}$	
Power supply Z	Zero point: Within $\pm 0.05 \% \mathrm{FS} /$ power fluctuation $\pm 10 \%$
Sensitivity: Within $\pm 0.05 \% /$ power fluctuation $\pm 10 \%$	
Stability condition: When 500×10^{-6} strain is input,	
outputs 10.00 V .	
Withstand Voltage 1000 VAC for 1 minute between measuring bridge and case	
1000 VAC for 1 minute between AC power supply and case	
Output Voltage Indication $41 / 2$ digit digital display (7-segment LED)	
11-segment LED bar meter	
Over Input Indication	Output voltage display flashing (41/2 digit digital
display only)	
Check Functions Bridge check	
Input Open Detection Function	When the input is open, output saturates to
the negative side. (913C only)	
Key Lock Functions	Locks all keys other than POWER switch.
(Allows settings on CAL and VOLTAGE OUT	
switches to be changed.)	
Remote Functions Capable of controlling the following functions.	
Balance adjustment execute (BAL), calibration	
strain output execute (CAL), key lock	
Synchronization Method	d Automatically determines internal (INT) or
	external (EXT) and manual setting.

TEDS	Reads the sensor TEDS information, and
	sets the rated output to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Actual Load Calibration	Sets actual load input to the VOLTAGE OUT
	output voltage.
	(Condition: Within the setting range of the
	sensitivity adjuster)
Vibration Resistant	5 to 200 Hz , with $29.4 \mathrm{~m} / \mathrm{s}^{2}$ (3 G) in X, Y and Z
	directions for 12 cycles, 10 min /cycle
Impact Resistant	15 G, 11 ms or less, in X, Y and Z directions,
	every 3 cycles
Operating Temperature	-10 to $50^{\circ} \mathrm{C}$
Operating Humidity	20 to 85\% (Non-condensing)
Storage Temperature	-30 to $70^{\circ} \mathrm{C}$
Power Supply	See table on the page 3-5
Dimensions $49 \mathrm{~W} \times 128.5$.5 H $\times 262.5 \mathrm{D} \mathrm{mm}$ (Excluding protrusions)
Panel-cut	dimensions: $50 \mathrm{~W} \times 113 \mathrm{H} \mathrm{mm}$
Weight Approx. 1.2	2 kg

Extension cables $\mathrm{N}-81$ to $\mathrm{N}-85$
Bridge boxes DB, DBB, and DBS
Housing case YC-A
Noise filter F-7B, F-BNC
Amplifier stand FA-1B
Shielded conversion cable N-117

To Ensure Safe Usage

The bridge check function shows the error information - that indicates the wire-breaking location - on the monitor. Note that if 2 or more wires are broken, the bridge check function shows the error information of only one wire.

Wire-breaking locations	Error
A (Red)	Er-a
B (White)	Er-b
C (Black)	Er-c
D (Green)	Er-d
3 wires or more	Er-b

Dimensions

$\xrightarrow{24.5} \mathrm{DPM}-911 \mathrm{~B} / 912 \mathrm{~B} / 913 \mathrm{C}(\mathrm{DPM}-912 \mathrm{~B} / 913 \mathrm{C}$ is the same in dimensions.)

-9 Signal Conditioner

*Output noise will increase in case of combining with a torque transducer.

High S / N is ensured by the strain DC amplifiers

-Easy operation greatly reduces the working hours.
OHigh sensitivity (Up to 10000 times)
-Fast response (DC to 500 kHz)
-Long-distance testing (Up to 2 km)

- Excellent nonlinearity (Within $\pm 0.01 \%$ FS)
-Universal power supply (CDV/CDA-900A)
(100 to 240 VAC or 10.5 to 15 VDC)
- TEDS compatible
-Distinguishes TEDS and remote sensing automatically.
- Low noise (30\% reduction when compared to conventional models)

Block diagram

Models

*1: 60.0 to 1000.0 2 : By using the user-specified registration function) By using the user-specified registration function
*2: Setting by DIP switch 1 to 4 on rear panel
*3: Performs BAL switch, CAL switch, and key-lock function
*4: By a 6 -conductor $\left(0.5 \mathrm{~mm}^{2}\right)$ shielded cable
*5: By a 4-conductor ($0.5 \mathrm{~mm}^{2}$) cable

Specifications

Measuring Targets Strain gages, strain-gage transducers and voltage		
Channels	1	
Applicable Bridge Resistance		See table.
Gage Factor	2.00 fixed	
Bridge Excitation	See table.	
Balancing Range(BAL)) Within $\pm 2 \%\left(\pm 10000 \times 10^{-6}\right.$ strain)	
Balancing Method	Auto-balance	
Accuracy: $\pm 1 \mathrm{~m} / \mathrm{m}$		
[At sensitive of $10 \mathrm{~V} / 1000 \times 10^{-6} \mathrm{strain}$]		
Saved in nonvolatile memory		
Nonlinearity Within $\pm 0.01 \%$ FS	Within $\pm 0.01 \%$ FS	
Input Impedance	$10 \mathrm{M} \Omega+10 \mathrm{M} \Omega$ or more	
Output Impedance Approx. 2Ω		
Calibration (CAL) Equivalent strain: \pm (1 to 9999×10^{-6} strain)		
DC voltage: \pm (10 to $99990 \mu \mathrm{~V}$)		
Setting: CAL switch (4-digital switch)		
Accuracy: Within $\pm\left(0.2 \%+0.5 \times 10^{-6}\right.$ strain)		
Within \pm ($\left.0.1 \%+5.0 \mu \mathrm{~V}_{\text {Rті }}\right)$		
Sensitivity Adjustment Sensitivity is set in combination with CAL and		
VOLTAGE OUT switches (4-digit digital switches)		
CAL switch range: 100 to 9999×10^{-6} strain by		
1×10^{-6} strain step		
VOLTAGE OUT switch range: 1.00 to 10.00 by 0.01 V step		
Accuracy: Within \pm ($0.5 \%+5 \mathrm{mV}$)		
Range: $\times 200$ to $\times 10000$		
Fine Sensitivity Adjustment Range: 1 to 1/2.5		
Frequency Response	DC to 500 kHz	
	(Amplitude deviation: 1, -3 dB)	
Low-pass Filter(LPF) Transfer characteristic: 4th order Butterworth		
Cutoff frequencies: $10,100,1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k} \mathrm{Hz}$ and		
FLAT - 6 steps		
Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$		
Attenuation: $-24 \pm 1 \mathrm{~dB} /$ oct.		
High-pass Filter(HPF) Cutoff frequencies: 0.2 Hz , OFF -2 steps		
Output	OUTPUT A: $\pm 10 \mathrm{~V}$ (Load resistance: $5 \mathrm{k} \Omega$ or more)	
OUTPUT B: $\pm 10 \mathrm{~V}$ (Load resistance: $5 \mathrm{k} \Omega$ or more)		
Noise	Low-pass filter	Noise (RTI)
	FLAT	$40 \mu \mathrm{~V}$ p-p or less
	100 kHz	$16 \mu \mathrm{~V}$ p-p or less
	10 kHz	$6 \mu \mathrm{~V}$ p-p or less
	1 kHz	$4 \mu \mathrm{~V}$ p-p or less
	100 Hz	$3 \mu \mathrm{~V}$ p-por less
	10 Hz	$2 \mu \mathrm{~V}$ p-p or less

[^0]| Safe Input | $\pm 15 \mathrm{~V}$ |
| :---: | :---: |
| Safe Common Mode Input | $\pm 10 \mathrm{~V}$ |
| CMRR | 100 dB or more |
| Stability Temperature | Zero point: $\pm 1 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}$ |
| | Sensitivity: $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ |
| Time | Zero point: $\pm 5 \times 10^{-6}$ strain $/ 24 \mathrm{~h}$ |
| | Sensitivity: $\pm 0.05 \% / 24 \mathrm{~h}$ |
| Power supply | Zero point: $\pm 0.05 \% \mathrm{FS} /$ power fluctuation $\pm 10 \%$ |
| | Sensitivity: $\pm 0.05 \% /$ power fluctuation $\pm 10 \%$ |
| | [when 1000×10^{-6} strain is input, outputs 10.00 V .] |
| Withstand Voltage (CD | V/CDA-900A only) |
| | 1 kVAC for 1 min between AC power supply |
| | and case |
| Output Voltage Display | 4112 digit digital display (7-segment LED) |
| | 11-segment LED bar graph meter |
| Over Input Indication | Output voltage: Flickers |
| | (4 1/2 digits, digital display only) |
| Check Functions | Bridge resistance check |
| Key Lock Function | For prohibiting operations other than POWER |
| | switch. |
| | (However, the setting values of the CAL switch |
| | and VOLTAGE OUT switch can be changed.) |
| Remote Functions | Performs BAL switch, CAL switch, and key-lock |
| | function |
| TEDS | Loads the TEDS information of the sensor and |
| | sets the rated output to the output voltage of |
| | the VOLTAGE OUT switch. |
| Actual Load Calibration | Sets the actual load to the output voltage of |
| | the VOLTAGE OUT switch. |

User's Function	See table.
Remote Sensing	See table.
Cable Extension	See table.
Vibration Resistant	5 to 200 Hz , with $29.4 \mathrm{~m} / \mathrm{s}^{2}$ (3 G) in X, Y
	and Z directions for 12 cycles, $10 \mathrm{~min} / \mathrm{cycle}$
Impact Resistant	$15 \mathrm{G}, 11$ ms or less, in X, Y
	and Z directions, every 3 cycles
Operating Temperature -10 to $50^{\circ} \mathrm{C}$	
Operating Humidity	20 to 85\% (Non-condensing)
Storage Temperature	-30 to $70{ }^{\circ} \mathrm{C}$
Power Supply	100 to 240 VAC, approx. 8 VA (At 100 VAC$)$
	10.5 to 15 VDC, approx. 4 W (At 12 VDC$)$
	(CDA/CDV-900A-DC: DC power supply only)
Dimensions	$49 \mathrm{~W} \times 128.5 \mathrm{H} \times 262.5 \mathrm{D} \mathrm{mm}$
	(Excluding protrusions)
Weight	Approx. 1.0 kg
Compliance (CDV/CDA-900A-DC only)	
	Directive 2014/30/EU (EMC)
	Directive 2011/65/EU, (EU)2015/863
	(10 restricted substances) (RoHS)
Standard Accessories	
Output cable U-08, U-59 AC power cable P-25 (With 2-pin conversion plug CM-52, CDV/ CDA-900A only) DC power cable P-69 (CDV/CDA-900A-DC only) Ferrite core $\times 5$ (CDV/CDA-900A-DC only) Instruction manual	
Optional Accessories	
Input cable U-37 Extension cables $\mathrm{N}-81$ to $\mathrm{N}-85$ Housing case YC-A Amplifier stand FA-1B AC adapter SA-10A-AMP (CDV/CDA-900A-DC only)	

CDV-900A, CDA-900A (CDA-900A is the same in dimensions.)

Simple-operation amplifier for various fields.

-Easy operation greatly reduces the working hours.
-4-digit CAL switch.
OHardly affected by noise.

- Various fixing fixtures and handles.
- You can set and control the MCF-B from your PC.

Olnput Open Detection Function (DPM-91A/92A)

1-channel

System Content

■Unit Base

MCF-8B (For measurement of up to 8 conditioner cards)
MCF-16B (For measurement of up to 16 conditioner cards)

■Conditioner Cards*

DPM-91A/91A-I (Strain Amplifier Card, carrier frequency 5 kHz)
DPM-92A/92A-I (Strain Amplifier Card, carrier frequency 12 kHz)
(The suffix "-l" means with feature of robustness against inverter noise.)

CDV-90A	(Signal Conditioner Card)
CTA-90A	(Thermocouple Card)
CCA-90A	(Charge Amplifier Card)
CFV-90A	(F/V Converter Card)

*The carrier frequencies are different. Please be sure DPM-91A and DPM92A are not mounted in the same unit base.
*When using strain gages, use bridge boxes.

* When mounting the CTA-90A and an empty channel exists, be sure to mount the dummy card.
*The software for the command control functions should prepared by yourself. We have released the control commands.
*To use the command control functions, you may require to update the firmware of conditioner cards.
Note that the update should be handled by Kyowa (with charge).

Specifications

Multi Signal Conditioner MCF-B		
Number of Conditioner Cards 8 (MCF-8B)		
16 (MCF-16B)		
Applicable Conditioner Cards		
	Card Model	Compatible Firmware
	DPM-91A, DPM-91A-I DPM-92A, DPM-92A-I	Ver. 03.00 or later
	CDV-90A	Ver. 03.00 or later
	CTA-90A	Ver.01.02 or later
	CFV-90A	Ver. 03.01 or later
	CCA-90A	Ver. 03.00 or later

Monitor Meter	Indicate output voltage of selected any channel
	by 1-digit sign and 4-digit value.
	When error occurs, error No. and message are
indicated.	
(Front) CH select: Switching channels that indicate on Switch the monitor meter. BAL: Balance adjustment is executed all channels simultaneously. +CAL, -CAL: Calibration output is executed all Channels simultaneously. KEY LOCK: When set to ON, no operation (Rear) \quad switches are available. OSC select: To select the oscillator signal internal or external. COM change-over: To change open or short between COM terminal	

Channel Indication CH LED lights up when the channel is monitored. Key-lock Indication KEYLOCK LED lights up when Key-lock set to ON.
PHYSICAL QUANTITY Indication

	PHYSICAL QUANTITY LED lights up when the
	conditioner card in TEDS mode.
Master Indication	OSC INT LED lights up when use DPM card and
	when OSC select switch sets to INT as internal
Oscillator.	
Other Function	Automatically select carrier frequency according
	to the types of the connected DPM card.

Command Control Function

Signaling System	RS-485 half duplex system
Communication Speed	9600 bps
Character Length	8 bits
Parity	None
Stop Bit	1 bit
Delimiter	CR: Command transmission to the MCF-B.
	CR+LF: Data transmission from the MCF-B.
Device ID	0 to F (up to 16 units can be controlled by one
	computer)
	*Device IDs are set using the DIP switches in the
	monitor display section.
Communication Range Up to 200 m	
Command	Start command control
	End command control
	Select monitor display channel
	Get card type
	Get connected models
	Get version
	Get error number
	Get voltage
	Execute balance adjustment (DPM-90A series,
	CDV-90A)
	Set calibration output
	(DPM-90A series, CDV-90A, CTA-90A, CFV-90A,
	CCA-90A)
	Set internal gain
	(DPM-90A series, CDV-90A, CTA-90A, CFV-90A,
	CCA-90A)

\square Signal Conditioner Card CDV-90A
Measuring Targets Strain gages (A separate bridge box is necessary.)
Strain-gage transducers
Channels 1
Gage Factor 2.00 fixed
Balance Adjustment Within $\pm 2 \%$ ($\pm 10 \mathrm{k} \times 10^{-6} \mathrm{strain}$)
Balance Adjustment Methods
Resistance: Auto balance
(Compensated value stored in
nonvolatile memory)
Accuracy: Within $\pm 1 \times 10^{-6}$ strain (With excitation
$10 \mathrm{~V}, 5 \mathrm{~V}$ output to 200×10^{-6} strain input
Nonlinearity Within $\pm 0.05 \%$ FS
Input Impedance $20 \mathrm{M} \Omega$ or more
Output Impedance 2Ω or less
Calibration Strain \pm (1 to 9999×10^{-6} strain)
Accuracy: Within \pm (0.3\% + 1×10^{-6} strain)
Sensitivity Adjustment
Sensitivity is set in combination with a 4-digit INPUT switch and
a 3-digit OUTPUT switch.
OUTPUT switch range: 1.00 to 5.00 V in $0.01-\mathrm{V}$ step
INPUT switch range: 200 to 9999×10^{-6} strain in 1×10^{-6} strain step
Accuracy: Within \pm (0.5\% + 5 mV)
Range: $\times 200$ to $\times 5000$
Fine Sensitivity Adjustment $\times 0.4$ to $\times 1$
Compatible Bridge Resistance 300Ω to $1 \mathrm{k} \Omega$ (With excitation 10 V)
60Ω to $1 \mathrm{k} \Omega$ (With excitation 2 V)
Bridge Excitation 2 or 10 VDC, switchable
Frequency Response DC to 50 kHz (Deviation +0.5, -3 dB)
Output Dual output (The same voltage is output to
BNC connector and concentralized output connector.)
Output voltage: Within $\pm 5 \mathrm{~V}$ or over (Load $5 \mathrm{k} \Omega$ or more)
Zero adjustment: Within $\pm 0.1 \mathrm{~V}$ or over
Low-pass Filter Transfer characteristic: 2nd order Butterworth
Cutoff frequencies: $10,30,100,300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k} \mathrm{Hz}$
and FLAT (8 steps)
Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$
Attenuation: (-12 $\pm 1) \mathrm{dB} /$ oct.
High-pass Filter Cutoff frequencies: 0.2 Hz , OFF (2 steps)
10×10^{-6} strain $\mathrm{p-p}$ (When 10 V bridge excitation
voltage, 200×10^{-6} strain input, 5 V output and
350Ω short)
Stability Temperature Zero point: Within $\pm 1 \times 10^{-6}$ strain per ${ }^{\circ} \mathrm{C}$
Sensitivity: Within $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Time Zero point: Within $\pm 10 \times 10^{-6}$ strain per 8 h
Sensitivity: Within $\pm 0.1 \% / 8 \mathrm{~h}$
(When 2 V bridge excitation voltage, 1000×10^{-6}
strain input and 5 V output. Zero point is measured
by 350Ω short, sensitivity is measured by 350Ω
bridge.)
Output Off Function Available
Withstand Voltage 500 VAC for 1 min , between the following two
positions respectively.
(Input and output, input and case, output and case)
Over Input Indication LED lights up.
TEDS Reads the sensor's TEDS information then sets
the rated output to OUTPUT switch as output
voltage.
Input Open Detection Function Saturates output in the negative direction
when input is open.
Input connector: NDIS4102 (7 pins) connector
Output connector: BNC connector
$24 \mathrm{~W} \times 96 \mathrm{H} \times 170 \mathrm{D} \mathrm{mm}$ (Excluding protrusions)
Approx. 150 g
Compliance Directive 2011/65/EU, (EU)2015/863
(10 restricted substances) (RoHS)
Standard Accessories Output cable U-59

Thermocouple Card CTA-90A
Applicable Thermocouples K, T, J, N, E, and R (Thermocouple resistance is $1 \mathrm{k} \Omega$ or less)

Measuring Range	K: -200 to $1300{ }^{\circ} \mathrm{C}$, T: -200 to $400^{\circ} \mathrm{C}$
	J: -200 to $1200{ }^{\circ} \mathrm{C}, \mathrm{N}:-200$ to $1300^{\circ} \mathrm{C}$
	E: -200 to $1000^{\circ} \mathrm{C}, \mathrm{R}: 0$ to $1700^{\circ} \mathrm{C}$
Channels	1
Reference Junction Compensation	
	$\pm 2.5^{\circ} \mathrm{C}\left(-10\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
	$\pm 1^{\circ} \mathrm{C}\left(20 \pm 3^{\circ} \mathrm{C}\right)$
Frequency Response	DC to 10 Hz (Deviation: $+0.5,-1 \mathrm{~dB}$)
Linearizer Accuracy	Within $\pm 0.5 \%$ FS (With type K, J, N, E, R)
	Within $\pm 1 \%$ FS (With type T)
Calibration	100 to $1700^{\circ} \mathrm{C}$ from step up of $100^{\circ} \mathrm{C}$
	(Full scale depends on the type of thermocouple.)
	Accuracy: Within $\pm 0.5 \%$ FS
Sensitivity Adjustment	
	Sensitivity is set in combination with a 2-digit
	INPUT switch and a 3-digit OUTPUT switch.
	OUTPUT switch range: 1.00 to 5.00 V in 0.01-V step
	INPUT switch range: 100 to $1700^{\circ} \mathrm{C}$ in $100^{\circ} \mathrm{C}$ step

Fine Sensitivity Adjustment $\times 0.4$ to $\times 1$

Frequency Response	DC to 10 Hz (Deviation $+0.5,-1 \mathrm{~dB}$)
Noise	$30 \mathrm{mV} \mathrm{V}_{\text {pp }}$ or less (Input short)
Stability Temperature	Zero point: Within $\pm 0.05 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
	Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Time	Zero point: Within $\pm 0.5 \% \mathrm{FS} / 8 \mathrm{~h}$
	Sensitivity: Within $\pm 0.5 \% / 8 \mathrm{~h}$
	(Using K type, 5 V output to $1300{ }^{\circ} \mathrm{C}$)
Withstand Voltage	500 VAC for 1 min , between the
	following two positions respectively:
	Input and output, input and case,
	output and case
Over Input Indication	LED lights up.
Connector Shape	Input connector: One-touch type
	terminal block
	Output connector: BNC connector
	Applicable wire
	Solid wire: $\phi 0.4 \mathrm{~mm}$ to $\phi 1.3 \mathrm{~mm}$
	(UL AWG16 to 26)
	Twisted wire: $\phi 0.2 \mathrm{~mm}^{2}$ to $\phi 1.3 \mathrm{~mm}^{2}$
	(UL AWG16 to 24)
Dimensions	$24 \mathrm{~W} \times 96 \mathrm{H} \times 170 \mathrm{D} \mathrm{mm}$
	(Excluding protrusions)
Weight	Approx. 140 g
Compliance	Directive 2011/65/EU, (EU)2015/863
	(10 restricted substances) (RoHS)

Standard Accessories Output cable U-59

Charge Amplifier Card CCA-90A

Channels

Measuring Targets IEPE accelerometer, Max. $\pm 5000 \mathrm{mV}$ (built-in amplifier type)
*Charge converter is necessary when using a
charge output accelerometer.
Recommended item: Fuji ceramics corporation,
"CAC1R0"

	Recommended
Input \quad Input format: Unbalanced input	

Constant current 4 mA
Excitation voltage: Approx. 24 V

Frequency Response 0.2 Hz to 50 kHz (Deviation $+1,-3 \mathrm{~dB}$)
Sensitivity Adjustment Sensitivity is set in combination with a 4-digit INPUT switch and a 3-digit OUTPUT switch.
INPUT switch range: 20 to 5000 mV in $1-\mathrm{mV}$ step
OUTPUT switch range: 1.00 to 5.00 V in $0.01-\mathrm{V}$ step Accuracy: Within $\pm(0.5 \%+5 \mathrm{mV})$
Range: $\times 1$ to $\times 250$
Fine Sensitivity Adjustment $\times 0.4$ to $\times 1$
Calibration (DC CAL) $\pm(1$ to 5000 mV$)$
Accuracy: Within $\pm 0.3 \%$ FS

Low-pass Filter	Transfer characteristic: 2nd order Butterworth
	Cutoff frequencies: $300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k} \mathrm{Hz}$ and
	FLAT (5 steps)
	Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$
	Attenuation: (-12 $\pm 1) \mathrm{dB} /$ oct.
Distortion Rate	Within 1\% (When $\pm 5 \mathrm{~V}$ output)
SN Ratio	48 dB p-p or more (When 20 mV input and
	5 V output)
Stability Temperature Zero point: Within $\pm 0.5 \mathrm{mV}$ per ${ }^{\circ} \mathrm{C}$	
	Sensitivity: Within $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Time	Zero point: Within $\pm 5 \mathrm{mV}$ per 8 h
	Sensitivity: Within ± 0.5 \%/8h
TEDS	Reads the sensor's TEDS information then
	displays it on the monitor meter to the value
	that converted the output voltage inito the
	physical quantity.
Output	Dual output, both BNC connector and
	integrated connector output the same signal.
	Voltage output: $\pm 5 \mathrm{~V}$ or more, when load
	resistance $5 \mathrm{k} \Omega$ or more
	Zero adjustment: -0.1 to 0.1 V or wider
Output Off Function	Available
Output Impedance	2Ω or less
Withstand Voltage	500 VAC for 1 min, between the following
	two positions respectively:
	Input and output, input and case, output
	and case
Over Input Indication LED lights up.	
Connector Shape	Input connector: BNC
	Output connector: BNC
Dimensions	$24 \mathrm{~W} \times 96 \mathrm{H} \times 170 \mathrm{Dmm}$ (Excluding protrusions)
Weight	Approx. 140 g
Compliance	Directive 2011/65/EU, (EU)2015/863
	(10 restricted substances) (RoHS)
Note) The specifications does not include the accuracy of the	
optional charge converter.	
Standard Accessories	Output cable U-59
- F/V Converter Card CFV-90A	
Channels	1
Measuring Targets	AC signal
	Pulse signal (including open collector signal)
Frequency Range	0.2 Hz to 100 kHz
	*When set to 1.0 V output and 20 kHz range,
	100 kHz input can measure as 5 V .
Input Voltage	± 0.5 to $\pm 50 \mathrm{~V}$
Input Coupling	AC or DC
	Select by switch operation.
Trigger Level (Input Detection Level) 0.0 to 5.0 V in 0.1-V step	
	Trigger level is set from the 2-digit thumbwheel
	switch.
	(When trigger level set to 5.1 V or more,trigger
	level saturates at 5.0 V .)

Dimensions

Compact Signal Conditioner

Compact and lightweight Suitable for an on-vehicle and mobile application.

-Different kinds of conditioner units are available for configuration of an optimum system for the measurement purpose.

- Signals of multiple units are output from a single integrated connector.
-Simultaneous calibration of all channels is possible on the unit base.

CDV-400B series is a multi-channel signal conditioner for measuring physical quantity such as strain, acceleration, load, voltage and frequency. Several conditioner cards are mounted to the unit base to configure an optimum measurement system for any application. The system operates on DC power, also an AC adapter SA-6A is available as an option. The compact and lightweight design makes the system suitable for measurement on motorcycles, tractors, boats and wheelchairs.

Compact \& lightweight Multiple channels

System content

OUnit Bases CDV-456B/458B/464B

These unit bases are for slotting various conditioner cards, which have a monitor meter, a channel select switch for a monitor meter and an integrated output connector.

-Signal Conditioner Units CV-10B/11B

These units are a signal conditioner with DC excitation voltage, which are connected to strain gage or strain-gage transducers to measure load, pressure, acceleration etc. The CV-11B is based on the auto balance method and the CV-10B is based on the manual balance method.
OLPF Module LFU-10B
This unit is used for removing unnecessary high frequency signals.

Potentiometer Unit CPT-11B

This unit is a unit to measure a rotation angle and speed together with a potentiometer. A power supply to measure a potentiometer resistance is built-in. Just connecting a potentiometer will start measurement.

OF/V Converter Module CFV-11B

This unit is used for frequency-to-voltage conversion.

-Unit Bases CDV-456B/458B/464B				
Channels	CDV-456B: 6			
	CDV-458B: 8			
	CDV-464B: 14			
Power Supply 11 to 30				
AC line with optional AC adapter SA-6A				
(Except for CDV-464B)				
For current consumption, see table below.				
Vibration Resistance $98.07 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G}), 10$ to 500 Hz (Amplitude 10 mm)				
Dimensions \& Weight See table below.				
Models	Current Consumption*	Dimensions (Excluding protrusions)	Weight (Approx.)	
			Unit Base Only	With full units of CV-11B
CDV-456B	0.5 A or less	$115 \times 59 \times 130 \mathrm{~mm}$	490 g	880 g
CDV-458B	0.6 A or less	$147 \times 59 \times 130 \mathrm{~mm}$	530 g	1 kg
CDV-464B	1.1 A or less	$259 \times 62 \times 135 \mathrm{~mm}$	880 g	1.8 kg

* At 12 VDC, with full units of CV-11B

Standard Accessories
Output cable U-59 (1 per channel), DC power cable P-65,
integrated output connector HDEB-9P (HDAB-15P for CDV-
464B), miniature screwdriver, fuse, instruction manual
Optional Accessories
AC adapter SA-6A, dummy panel DUMMY-400B-N

Signal Conditioner Units CV-10B/11B	
Channels	1
Compatible Bridge Resistance 120 to 1000Ω, full bridge system	
Balance Adjustment Range	
CV-11B	$\pm 1 \%$ ($\pm 5000 \times 10^{-6}$ strain) or more
	Fine zero trimmer provided
CV-10B	$\pm 0.7 \%$ ($\pm 3500 \times 10^{-6}$ strain) or more if bridge
	resistance 120Ω
	$\pm 1 \%\left(\pm 5000 \times 10^{-6}\right.$ strain) or more if bridge
	resistance 350Ω
Balance Adjustment Methods	
CV-11B	Auto balance
	Accuracy: Within $\pm 2 \times 10^{-6}$ strain
	(At range 200×10^{-6} strain)
CV-10B	Manual balance
Bridge Excitation	2 VDC
Sensitivity	$\pm 0.1 \mathrm{~V}$ per 10×10^{-6} strain input
Output	$\pm 2 \mathrm{~V}$ or more (Load $5 \mathrm{k} \Omega$ or more)
Nonlinearity	Within $\pm 0.1 \%$ FS
Range	5 steps of 200, 500, $1 \mathrm{k}, 2 \mathrm{k}$, and $5 \mathrm{k} \times 10^{-6}$ strain
	Accuracy: Within $\pm 1 \%$ FS
Fine Sensitivity Adjustment	
	Continuously variable between $\times 1$ to $\times 1 / 2.5$
Calibration (CAL)	Linked with selected range
	10 steps of $\pm 200, \pm 500, \pm 1 \mathrm{k}, \pm 2 \mathrm{k}$,
	and $\pm 5 \mathrm{k} \times 10^{-6}$ strain
	Accuracy: Within $\pm 0.5 \%$
Frequency Response	DC to 2.5 kHz (Deviation $\pm 1 \mathrm{~dB}$)
Noise	8×10^{-6} strain p-p (See input, band noise value)
Power Supply	From the unit base (Within $\pm 30 \mathrm{~mA}$)
Weight	Approx. 65 g (CV-11B), approx. 55 g (CV-10B)
Standard Accessories	Input cable U-09 (1 piece/unit)

Potentiometer Unit CPT-11B	
Channels	1
Compatible Resistance	1 to $10 \mathrm{k} \Omega$
Power Supply to Potentiometer Constant voltage of 1 V (Built-in)	
Balance Adjustment	90% or more of potentiometer
	resistance
Balance Adjustment Methods	Auto balance
Output	Voltage: $\pm 2 \mathrm{~V}$ or more
	(Load $5 \mathrm{k} \Omega$ or more)
Nonlinearity	Within $\pm 0.1 \%$ FS
Range	4 steps of $10,20,50$ [\%] and OFF
	Accuracy: Within $\pm 0.5 \%$
Fine Sensitivity Adjustment	Continuously variable between $\times 1$
	and $\times 1 / 2.5$
Calibration	Linked with selected range
	7 steps of $\pm 10, \pm 20, \pm 50$ and OFF
	Accuracy: Within $\pm 0.05 \%$
Frequency Response	DC to $100 \mathrm{~Hz}, \pm 0.5 \mathrm{~dB}$
SN Ratio	46 dB or more to maximum output
Power Supply	From the unit base (Within $\pm 30 \mathrm{~mA}$)
Weight	Approx. 65 g

Fine Sensitivity Adjustment

and $\times 1 / 2.5$	
Response Time	Accuracy: Within $\pm 0.5 \%$
Withstand Voltage between Input and Output	
$250 \mathrm{~V}_{\text {rms }}$ or $700 \mathrm{~V}_{\text {p-p }}$ for one minute	
Allowable Power Supply to Input Connector	
Fower Supply	$\pm 6 \mathrm{~V}, \pm 30 \mathrm{~mA}(12 \mathrm{~V}$ power supply)
Weight	From the unit base (80 mA or less)

Standard Accessories Input cable U-10 (1 piece/unit)

When mounting the modules, take care of the following limitations.

Mounted Models	Power Supply to Sensors	CDV-456B			
		CDV-458B	CDV-464B		
			CH 1 to 7	CH 8 to 14	
CFV-11B	Yes	2	2	2	2
	No	4	3	3	3
		Remaining channels accept units other than CZA-10B/11B.			
LFU-10B and other units mounted in combination	LFU-10B is mounted to even channels only.				
CFV-11B mustn't be mounted to the last channel.					

DynamicStrain easuring Instruments

Outline

1-channel

LPF Module LFU-10B

Channels	1
DC Gain	$1: 1$ (Accuracy: Within $\pm 0.1 \% \mathrm{FS})$
Nonlinearity	Within $\pm 0.1 \% \mathrm{FS}$
Cutoff Frequencies	5 steps of $10,30,100,300[\mathrm{~Hz}]$ and FLAT
	Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$
Attenuation	(-12 ± 1) dB/oct.
Output	Voltage: $\pm 2 \mathrm{~V}$ or more (Load $5 \mathrm{k} \Omega$ or more)
	Current: $\pm 10 \mathrm{~mA}$ or more (Load 30Ω)
SN Ratio	52 dB or more to output of $\pm 2 \mathrm{~V}$
Power Supply	From the unit base (Within $\pm 20 \mathrm{~mA}$ with no load)
Weight	Approx. 45 g

Standard Accessories

Input cable (10 cm) with BNC connectors at both ends

Highly accurate 2-channel isolated DC amplifiers

Outline

1-channel
OInput-output isolation ensures excellent stability and makes it less affectable by noise.
OLPF enables measurement at high SN ratio.

- Highly accurate
-Allowable common mode voltage $\pm 300 \mathrm{~V}$ and allowable max. input voltage $\pm 110 \mathrm{~V}$
- Voltage calibration function
- Moderate price

The DA-710A is a highly accurate 2-channel isolated DC amplifier which satisfies requirements for high input impedance, high gain accuracy and stability. Since the channels are isolated from each other, the DA-710A can effectively be used for measurement if the 2 channels are connected to different signal sources. In addition, input-output isolation ensures excellent stability and outstandingly minimizes noise effects. The allowable common mode voltage is ± 300 VDC, while setting the attenuation switch to $1 / 100$ makes the allowable max. input voltage ± 110 VDC. Furthermore, high-frequency components are eliminated by the LPF for measurement at a high SN ratio.
Thus, the DA-710A is used for various purposes including general micro voltage measurement, temperature measurement in combination with a thermocouple, and as a preamplifier for recorders and data processors.

Specifications

Channels	2
Input Modes	Differential, isolated between input and
	output, and between channel and channel
Isolation Methods	Optical
Input Impedance	$10 \mathrm{M} \Omega+10 \mathrm{M} \Omega$ or more (ATT $\times 1$ and OFF)
	$1 \mathrm{M} \Omega+1 \mathrm{M} \Omega$ or more (ATT $\times 1 / 100$)
Gain	13 steps of 10, 20, 50, 100, 200, 500 ($\times 1$ and
	$\times 1 / 100$) and OFF; continuously variable
	between $\times 1$ and $\times 2.5$ or more
	Gain accuracy: $\pm 0.1 \%$ FS (ATT $\times 1$)
	$\pm 0.3 \%$ FS (ATT $\times 1 / 100$)
Stability Zero Balance	Within $\pm 5 \mu \mathrm{~V}_{\text {RтI }} /{ }^{\circ} \mathrm{C}$ (With input shorted and gain 500$)$
	Gain: Within $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Nonlinearity	Within $\pm 0.05 \%$ FS
Frequency Response	DC to $10 \mathrm{kHz}(+1,-3 \mathrm{~dB}$)
Output A	$\pm 10 \mathrm{~V}$ (Load resistance $10 \mathrm{k} \Omega$ or more)
Output B	$\pm 10 \mathrm{~V}$ (Load resistance $10 \mathrm{k} \Omega$ or more)
Output Impedance	1Ω or less
CMRR	120 dB or more (DC to 60 Hz)
	(With balanced input of $1 \mathrm{k} \Omega$, gain 500
	and ATT $\times 1$)
Allowable Common Mode Voltage ± 300 VDC or AC peak	
	Insulation resistance $1000 \mathrm{M} \Omega$ or more
Allowable Max. Input Voltage $\pm 2 \mathrm{VDC}$ or AC peak (ATT $\times 1$)	
	± 110 VDC or AC peak (ATT $\times 1 / 100$)
Zero Balance Adjustment Range (Output)	
	$\pm 5 \mathrm{~V}$ (OUT A and B linked)
	$\pm 1 \mathrm{~V}$ (OUT B independent)
Noise	$10 \mu \mathrm{~V}_{\mathrm{ppp}}(\mathrm{RTI})+6 \mathrm{mV} \mathrm{V}_{\text {pp }}(\mathrm{RTO})$
	(With input shorted, gain 500 and ATT $\times 1$)
Calibration Voltage (Output) Within $4 \mathrm{~V} \pm 0.2 \%$	
Settling Time	100μ s or less, output: Within $\pm 0.1 \%$
Overload Recovery Time 100μ s or less, output: Within $\pm 0.1 \%$	
Crosstalk Between Channels $10 \mu \mathrm{~V}_{\text {pp }}(\mathrm{RTI})+6 \mathrm{mV} \mathrm{V}_{\text {pp }}$ (RTO) or less	
Common Mode Crosstalk Rejection Ratio $10 \mu \mathrm{~V}_{\text {p-p }}(\mathrm{RTI})+6 \mathrm{mV} \mathrm{V}_{\text {pp }}($ RTO) or less	
LPF Transfer characteristic: 2nd order Butterworth	
Cutoff frequencies: $10,30,100,300,1 \mathrm{k} \mathrm{Hz}$ and FLAT (6 steps)	
Amplitude ratio at cutoff point: $-3 \pm 1 \mathrm{~dB}$	
Attenuation: (-12 $\pm 1) \mathrm{dB} /$ oct.	
Operating Temperature -10 to $50^{\circ} \mathrm{C}$	
Operating Humidity	20 to 80\% (Non-condensing)
Storage Temperature	-20 to $70^{\circ} \mathrm{C}$
Storage Humidity	5 to 95\% (Non-condensing)
Withstand Voltage	Between [Channel 1 input connector pin] and
	[Output, case, AC power supply]: 1 kVAC for 1 min
	Between [Channel 2 input connector pin] and
	[Output, case, AC power supply]: 1 kVAC for 1 min
	Between [AC power supply] and
	[Output, case]: 1 kVAC for 1 min
	Between [Channel 1 input] and
	[Channel 2 input]: 1 kVAC for 1 min
Power Supply	$100 \mathrm{VAC}, 4.5 \mathrm{VA}$
Dimensions	$49 \mathrm{~W} \times 128.5 \mathrm{H} \times 262.5 \mathrm{D} \mathrm{mm}$
	(Excluding protrusions)
Weight	Approx. 1.0 kg

Standard Accessories Input cable U-108
Output cable U-63
AC power cable P -25 (With 2-pin conversion plug CM-52)
Miniature screwdriver
CD-R (Instruction manual)
Simplified manual
Optional Accessories Housing case YC-A
Amplifier stand FA-1B

Optional Accessories for Dynamic Strain Measuring Instruments

Portable Housing Case YC-A (For DPM-900 Series, CDV/CDA-900A, VAQ-700A, DA-710A)

YC-8A

Models

Models	Power Supply	Housing Units	Width [mm]	Depth [mm]	Height [mm]
YC-3A	AC	3	1793	336.9	157.5
YC-3A-AC/DC	AC or DC	3	179		
YC-4A	AC	4	228.8		
YC-4A-AC/DC	AC or DC				
YC-6A	AC	6	327.8		147.5
YC-6A-AC/DC	AC or DC				
YC-8A	AC	8	426.8		
YC-8A-AC/DC	AC or DC				

Specifications

Power Supply	100 VAC
	100 VAC or 12 VDC (YC-A-AC/DC)
Switches	Switches on the front panel
	Power SW, BAL SW, All-Channel CAL SW, and
	Key-lock SW
Terminals on Rear Panel	Remote switched on the rear panel
	Balance adjustment, calibration, key lock,
	and synchronized connection

1. No function to get status.
2. The DPM-900 Series and CDV/CDA-900A SET function is not supported.
3. Not suitable for use in on-vehicle test
4. The unit may not be stood on its rear surface
5. YC-3A/4A have a carrying handle.
6. CDV/CDA-900A-DC: For YC-A-AC/DC only

Standard Accessories

AC power cable P-17 (With 2-pin conversion plug CM-52) Instruction manual

Optional Accessories

JIS rack mounting bracket YC-JIS (Supports YC-8A only) DIN rack mounting bracket YC-DIN (Supports YC-8A only) Dummy panel for 1 channel YB-DUMMY
Handle for YC-A YC-HANDLE

Noise Filters

To remove noise containing high-frequency components

OF-7B

For input of all DPM series models

OF-BNC

For output of all DPM series models

Amplifier Stands

OFA-1B

DPM-900 series,
DA-710A, CDV-900A
CDA-900A, VAQ-700A

Wireless Instruments

A wireless measuring instrument can save labor
and measure rotating bodies by establishing
a wireless connection between the measuring
digital telemeters and a variety of other products
to use in industrial measurement and laboratory
research fields.

Digital Telemeter MRS-100 Series

Wireless Instrument Selection Chart

Wireless connection between the measuring instrument and sensor

Models	Channels	Measuring Targets	Radio Certification	Radio Communication Distance (Max.)	Frequency Response (Max.)	Interfaces	Output	Pages
Digital Telemeter MRS-100 Series NEW Transmitter Receiver Fast response	1 4	Strain (Gage, transducer) Voltage- output sensors Thermocouples	Japan the USA China Thailand Taiwan EU India Korea (Option)	50 m	DC to 370 Hz	USB	Analog $\pm 5 \mathrm{~V}$	3-23

Wireless connection between the measuring instrument and PC

Models	Channels	Measuring Targets	Radio Certification	Compliance Standard	Frequency Response (Max.)	Interfaces	Pages
Compact Recorder CTRS-100 Series NEW Shock Resistance $490 \mathrm{~m} / \mathrm{s}^{2}$ (50 G)	$\begin{gathered} 4 \\ (\text { Max. 128) } \end{gathered}$	Strain (Gage, transducer) Voltage- output sensors Thermocouples CAN (FD) signal	Japan the USA	IEEE 802.11 a/b/g/n/ac	100 kHz	Wireless USB LAN SD card	3-57

[^0]: [At the bridge excitation: 2 V and bridge resistance: 120Ω, when 1000×10^{-6} strain is input, outputs 10 V .]

